朴素贝叶斯分类与概率图模型——贝叶斯网络解析
需积分: 29 110 浏览量
更新于2024-08-13
收藏 3.62MB PPT 举报
"这篇资料主要介绍了贝叶斯网络在消息传递中的应用,涵盖了对偶问题的概念,以及与贝叶斯网络相关的概率图模型、朴素贝叶斯分类、马尔科夫链和隐马尔科夫模型等内容。"
贝叶斯网络是一种概率图模型,它利用贝叶斯定理来描述变量之间的条件依赖关系。在这个网络中,每个节点代表一个随机变量,边则表示变量间的条件概率关系。贝叶斯网络的核心在于通过前向概率和后验概率的计算,进行推理和决策。
在描述中提到的对偶问题,是数学优化领域的一个重要概念。当面临一个难以直接求解的问题时,可以通过转换成一个与原问题等价但形式不同的问题来求解,这个新的问题就是原问题的对偶问题。例如,从一组整数中选择若干数使得和为特定值的问题,可以通过对偶问题的转化来找到解决方案。
资料还提到了Delaunay三角剖分和K近邻图的相关内容,这些都是在图形理论和数据挖掘中常见的工具。Delaunay三角剖分是一种几何构造,它确保了任意点与它的最近邻点之间的连线不会被其他三角形穿过。K近邻图则是数据挖掘中的一个基础概念,其中每个节点的邻居不超过K个,用于分类或回归分析。
相对熵(也称为互熵、交叉熵)是衡量两个概率分布之间差异的一种度量,它可以用来评估模型的预测分布与实际观测数据分布的相似程度。而互信息则是衡量两个随机变量相互依赖程度的度量,它反映了联合分布相对于独立分布的额外信息。
课程的主要目标是让学习者掌握朴素贝叶斯分类方法,理解概率图模型(PGM)的基本思想,包括链式网络、树形网络、因子图等结构,并能将非树形网络转化为树形网络。此外,还涉及马尔科夫链和隐马尔科夫模型,这两种模型在自然语言处理、生物信息学等领域有广泛应用,其网络拓扑和含义是理解这些模型的关键。
这份资料提供了一个全面的学习框架,涵盖了贝叶斯网络的基础知识以及与其相关的概率图模型、优化理论和统计概念,对于理解和应用这些技术进行数据建模和推理具有重要意义。
235 浏览量
2024-05-28 上传
2023-05-18 上传
2023-05-18 上传
2023-12-20 上传
2023-05-18 上传
2024-04-12 上传
条之
- 粉丝: 27
- 资源: 2万+
最新资源
- SimpleChat:简单明了的聊天应用
- shopify-koa-server:使用Koa.js创建Shopify授权应用程序的极简框架
- WorkWithDagger:第一项任务
- Data-Journalism-and-D3
- STM32F407 ADC+DMA+定时器实现采样
- DomePi:适用于Raspberry Pi 4B的Domesday Duplicator捕获应用程序构建和图像
- 2021年南京理工大学331社会工作原理考研真题
- Web-Development:DevIncept 30天贡献者计划对Web开发的贡献
- ArchetypeAnalyzerRemake
- 微博客:轻量级博客平台
- Bored:无聊时的小应用
- androidprogress
- gettext-to-messageformat:将gettext输入(popotmo文件)转换为与messageformat兼容的JSON
- 管理单元测试
- nianny.github.io
- 基于深度学习的工地安全帽智慧监管系统.zip