Quantum key distribution with 1.25 Gbps clock
synchronization
J. C. Bienfang, A. J. Gross, A. Mink, B. J. Hershman, A. Nakassis, X. Tang, R. Lu, D. H.
Su, Charles W. Clark, Carl J. Williams
National Institute of Standards and Technology, 100 Bureau Dr.,Gaithersburg, MD 20899
bienfang@nist.gov
E. W. Hagley, Jesse Wen
Acadia Optronics LLC, 13401 Valley Drive, Rockville, MD 20850
Abstract: We have demonstrated the exchange of sifted quantum
cryptographic key over a 730 meter free-space link at rates of up to 1.0
Mbps, two orders of magnitude faster than previously reported results. A
classical channel at 1550 nm operates in parallel with a quantum channel at
845 nm. Clock recovery techniques on the classical channel at 1.25 Gbps
enable quantum transmission at up to the clock rate. System performance is
currently limited by the timing resolution of our silicon avalanche
photodiode detectors. With improved detector resolution, our technique
will yield another order of magnitude increase in performance, with existing
technology.
This work was performed for the U.S. Government and is not subject to copyright.
OCIS codes: (060.4510) Optical communications; (030.5260) Photon counting;
(200.2610) Free-space digital optics; (270.5570) Quantum detectors
______________________________________________________________________________________________
References and links
1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 4, 41.1-41.8
(2002).
2. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with
a plug&play system,” New J. Phys. 4, 41.1-41.8 (2002).
3. T. Kimura, Y. Nambu, T. Hatanaka, A. Tomita, H. Kosaka, K. Nakamura, “Single-photon interference over
150-km transmission using silica-based integrated-optic interferometers for quantum cryptography,” Eprint
quant-ph/0403104 (2004),
http://arxiv.org/ftp/quant-ph/papers/0403/0403104.pdf.
4. R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, “Practical free-space quantum key
distribution over 10 km in daylight and at night,” New J. Phys. 4, 43.1-43.14 (2002).
5. C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster , J. G. Rarity, “A step
towards global key distribution,” Nature 419, 450-450 3 (2002).
6. A. X. Widmer and P. A. Franaszek, “A DC-balanced, partitioned-block, 8B/10B transmission code,” IBM
J. Res. Develop. 27, 440-451 (1983).
7. C. H. Bennet and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proc.
of the IEEE Int. Conf. on Computers, Systems & Signal Processing, (Bangalore, India, December 10-12,
1984), pp. 175-179.
8. C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 3121-
3124 (1992).
9. B. Huttner, A. Muller, J. D. Gauthier, H. Zbinden, and N. Gisin, “Unambiguous quantum measurement of
nonorthogonal states,” Phys. Rev. A 54, 3783-3789 (1996).
10. D. S. Pearson and C. Elliot, “On the optimal mean photon number for quantum cryptography,” Eprint
quant-ph/0403065 (2004),
http://arxiv.org/ftp/quant-ph/papers/0403/0403065.pdf
11. V. Scarani, A. Acin, G. Ribordy, and N. Gisin, “Quantum cryptography protocols robust against number
splitting attacks for weak laser pulse implementations,” Phys. Rev. Lett. 92, 057901 (2004).
12. A. Spinelli, M. A. Ghioni, S. D. Cova, and L. M. Davis, “Avalanche detector with ultraclean response for
time-resolved photon counting,” IEEE J. Quant. Electron. 34, 817-821 (1998).