C语言实现二叉排序树多种算法与栈队列操作详解

需积分: 10 5 下载量 48 浏览量 更新于2024-09-11 收藏 6KB TXT 举报
本资源是一份名为"8607 实现二叉排序树的各种算法.txt"的文档,主要介绍了在C语言中实现二叉排序树(Binary Search Tree,BST)的相关算法。文档内容涵盖了二叉树数据结构的基础概念、栈和队列操作,以及与之相关的函数实现,如初始化栈、入栈(Push)、出栈(Pop)以及判断栈是否为空(StackEmpty)。 首先,我们来看看什么是二叉排序树。二叉排序树是一种特殊的二叉树,它的每个节点的值都大于其左子树中的所有节点,小于其右子树中的所有节点。这种特性使得在二叉搜索树中查找、插入和删除操作的时间复杂度可以达到最优,即平均时间复杂度为O(log n)。 文档中提到的`BiTNode`结构体表示二叉树的节点,包含一个数据域`data`用于存储元素值,以及两个指针`lchild`和`rchild`分别指向左子树和右子树。而`BiTree`和`SqQueue`是树和队列的类型定义,它们分别对应着二叉树的指针和队列操作的数据结构。 在实现算法时,文档提供了几个关键函数: 1. `InitStack(SqStack &S)`:用于初始化一个栈,分配足够的内存空间,并将`top`指针设置在底层数组的起始位置。 2. `Push(SqStack &S, BiTree e)`:用于将元素`e`压入栈顶,如果栈已满,会动态扩展栈的容量。 3. `Pop(SqStack &S)`:从栈顶移除并返回元素,同时更新栈顶指针和栈的大小。 4. `StackEmpty(SqStack S)`:检查栈是否为空,如果`top`等于`base`,则栈为空,返回1;否则返回0。 在二叉搜索树的搜索操作中,文档提到的`SearchNode`函数未提供具体实现,但通常这样的函数会接收一个二叉树`T`和一个目标元素值`e`,通过递归遍历树结构来查找指定的节点。在查找过程中,如果找到匹配的节点则返回该节点,否则返回NULL。 总结来说,这份文档是关于如何在C语言中利用栈来辅助实现二叉排序树的创建、插入、删除以及查找操作。栈在这里作为临时数据结构,帮助优化搜索过程,展示了二叉树数据结构和基础数据结构操作的结合运用。理解这些函数及其工作原理,对于理解和实践二叉搜索树以及其他基于递归和迭代操作的算法至关重要。
2010-12-14 上传
描述 用函数实现如下二叉排序树算法: (1) 插入新结点 (2) 前序、中序、后序遍历二叉树 (3) 中序遍历的非递归算法 (4) 层次遍历二叉树 (5) 在二叉树中查找给定关键字(函数返回值为成功1,失败0) (6) 交换各结点的左右子树 (7) 求二叉树的深度 (8) 叶子结点数 Input 第一行:准备建树的结点个数n 第二行:输入n个整数,用空格分隔 第三行:输入待查找的关键字 第四行:输入待查找的关键字 第五行:输入待插入的关键字 Output 第一行:二叉树的先序遍历序列 第二行:二叉树的中序遍历序列 第三行:二叉树的后序遍历序列 第四行:查找结果 第五行:查找结果 第六行~第八行:插入新结点后的二叉树的先、中、序遍历序列 第九行:插入新结点后的二叉树的中序遍历序列(非递归算法) 第十行:插入新结点后的二叉树的层次遍历序列 第十一行~第十三行:第一次交换各结点的左右子树后的先、中、后序遍历序列 第十四行~第十六行:第二次交换各结点的左右子树后的先、中、后序遍历序列 第十七行:二叉树的深度 第十八行:叶子结点数 Sample Input 7 40 20 60 18 50 56 90 18 35 30 Sample Output 40 20 18 60 50 56 90 18 20 40 50 56 60 90 18 20 56 50 90 60 40 1 0 40 20 18 30 60 50 56 90 18 20 30 40 50 56 60 90 18 30 20 56 50 90 60 40 18 20 30 40 50 56 60 90 40 20 60 18 30 50 90 56 40 60 90 50 56 20 30 18 90 60 56 50 40 30 20 18 90 56 50 60 30 18 20 40 40 20 18 30 60 50 56 90 18 20 30 40 50 56 60 90 18 30 20 56 50 90 60 40 4 4