www.xilinx.com 19
UG471 (v1.10) May 8, 2018
Introduction
7系列FPGASelectIO资源用户指南
7系列FPGADCI—仅在HPIObank中可用
IO网络和原语有一个称为VCCAUX_IO的设计约束,如果要将任何bank的VCCAUX_IO引脚
设置为2.0V,则应在设计中指定该约束。有关此约束的信息,请参见第46页的7系列FPGAS
electIO属性约束。
VCCAUX_IO引脚在Kintex-7和Virtex-7器件封装内部以三个或四个HPIObank为一组连接在
一起。UG475的封装文件章节:7系列FPGA封装和引脚分配规范包含指向ASCII封装文件的
链接,器件图一章中的数字指示哪些器件封装组合包含带有VCCAUX_IO引脚的HPIObank。
ASCII封装文件指示封装内将哪个bank的VCCAUX_IO管脚组合在一起。VCCAUX_IO封装管
脚名称的语法为VCCAUX_IO_G#,其中#是内部组号。封装文件包含一个名为“VCCAUXGr
oup”的列,该列显示每个IO引脚与IObank关联的VCCAUX组。同一个VCCAUX_IO组中的所
有IO管脚必须在其兼容的网络或原语上具有VCCAUX_IO约束。组合在一起的所有VCCAUX_
IO引脚应连接到板上的同一电压轨。Kintex-7器件的FBG封装包含VCCAUX_IO引脚,但内
部没有连接。这些封装中的所有HPIObank都由主VCCAUX轨供电。
配置期间和配置后IOs的状态
7系列FPGA具有专用于IObank0中的配置功能的管脚。bank14和15还包含称为多功能或多
用途管脚的IO管脚,它们也可用于配置,但在配置后转换为普通IO管脚已经完成。此外,
在SSI器件中,bank11、12、17、18、20和21中的管脚在配置期间具有类似于多功能管脚
的限制。但是,这些bank中的管脚没有任何配置功能。
在bank14和/或bank15为HRbank且配置为VCCO要求<1.8V的器件中,如果输入连接到0或
浮动且配置电压>2.5V。有关详细信息,请参阅UG470:7系列FPGA配置用户指南。
7系列FPGADCI—仅在HPIObank中可用
随着FPGA变得越来越大,系统时钟速度越来越快,PC板的设计和制造变得更加困难。随
着边缘速率越来越快,保持信号完整性成为一个关键问题。PC板走线必须正确端接以避
免反射或振铃。
为了终止迹线,传统上添加电阻器以使输出和/或输入匹配接收器或驱动器的阻抗与迹线的
阻抗。然而,由于器件IOs增加,在器件引脚附近添加电阻器会增加电路板面积和元件数量
,并且在某些情况下可能在物理上是不可能的。为了解决这些问题并实现更好的信号完整
性,Xilinx开发了数控阻抗(DCI)技术。
根据IO标准,DCI可以控制驱动器的输出阻抗,也可以在驱动器和/或接收器上添加一个并
行终端,以精确匹配传输线的特性阻抗。DCI主动调整IO内部的这些阻抗,以校准放置在VR
N和VRP引脚上的外部精密参考电阻器。这补偿了IO的变化
发送反馈
趣卡翻译(fanyi.qukaa.com)
7 Series FPGAs SelectIO Resources User Guide www.xilinx.com 19
UG471 (v1.10) May 8, 2018
7 Series FPGA DCI—Only available in the HP I/O banks
There is a design constraint for I/O nets and primitives called VCCAUX_IO, which should
be specified in the design if the V
CCAUX_IO
pins for any banks are to be set at 2.0V. See
7 Series FPGA SelectIO Attributes/Constraints, page 46 for information on this constraint.
The V
CCAUX_IO
pins are connected together internally inside Kintex-7 and Virtex-7 device
packages in groups of three or four HP I/O banks. The package files chapter of
UG475
: 7 Series FPGA Packaging and Pinout Specification contains links to the ASCII package
files, and the figures in the device diagrams chapter indicate which device/package
combinations contain HP I/O banks with V
CCAUX_IO
pins. The ASCII package files
indicate which bank’s V
CCAUX_IO
pins are grouped together inside the package. The
V
CCAUX_IO
package pin names have the syntax VCCAUX_IO_G#, where the # is the
internal group number. The package files cont ain a column called “VCCAUX Group” that
shows for every I/O pin which V
CCAUX
group that I/O bank is associated with. All I/O
pins that are in the same V
CCAUX_IO
group must have VCCAUX_IO constraints on their
nets or primitives that are compatible. All V
CCAUX_IO
pins that are grouped together
should be tied to the same voltag e rai l on the board. FBG packages for Kintex-7 devices
contain V
CCAUX_IO
pins but are no connects internally. All HP I/O banks in those packages
are powered from the main V
CCAUX
rail instead.
State of I/Os During and After Configuration
7 series FPGAs have pins dedicated to configuration functions contained in I/O bank 0.
Banks 14 and 15 also contain I/O pins known as multi-function or multi-purpose pins that
can also be used for configuration, but then conve rt to normal I/O pins after configuration
is complete. Additionally in SSI devices, pins in banks 11, 12, 17, 18, 20, and 21 have
restrictions during configuration similar to multi-function pins. However, pins in these
banks do not have any configuration functions.
In devices where bank 14 and/or bank 15 are HR banks and configured with a V
CCO
requirement <
1.8V, inputs might have a 0-1-0 transition to the interconnect logic during
configuration if the input is tied to 0 or floating and the configuration voltage is >
2.5V. For
further details, refer to UG470
: 7 Series FPGAs Configuration User Guide.
7 Series FPGA DCI—Only available in the HP I/O banks
Introduction
As FPGAs get bigger and system clock speeds get faster, PC board design and
manufacturing becomes more difficult. With ever faster edge rates, maintaining signal
integrity becomes a critical issue. PC board traces must be properly terminated to avoid
reflections or ringing.
To terminate a trace, resistors are traditionally added to make the outpu t and/or input
match the impedance of the re ceiver or driver to the impedance of the trace. However, due
to increased device I/Os, adding resistors clos e to the device pins increases the board area
and component count, and can in some cases be physically impossible. To address these
issues and to achieve better signal integrity, Xilinx developed the digitally controlled
impedance (DCI) technology.
Depending on the I/O standard, DCI can e ither control the output impedance of a driver,
or add a parallel termination present at the driver and/or receiver, with the goal of
accurately matching the characteristic impedance of the transmission line. DCI actively
adjusts these impedances inside the I/O to calibrate to external precision reference
resistors placed on the VRN and VRP pins. This compensates for changes in I/O