基于内容的图像检索技术:从文本到视觉特征
需积分: 10 154 浏览量
更新于2024-07-30
1
收藏 537KB PDF 举报
"CBIR图像检索技术文档"
在信息技术领域,CBIR(Content-Based Image Retrieval,基于内容的图像检索)是一种重要的技术,用于解决海量图像数据中如何快速且准确地找到所需图像的问题。随着多媒体技术和计算机网络的快速发展,数字图像的数量急剧增加,对有效的图像检索方法的需求日益迫切。传统的基于文本的图像检索方法,即通过关键词或自由文本描述图像,已经不能满足需求,因为这种方法依赖于人工标注,耗时费力且容易出错。
基于内容的图像检索技术的出现,正是为了克服这些局限性。它不再依赖于人工标注,而是自动从图像本身提取视觉特征,如颜色、纹理和形状等,作为检索的依据。这些特征更直接地反映了图像的内容,从而提高了检索的准确性。例如,颜色直方图可以用来描述图像的整体色彩分布,纹理分析则可以识别图像的模式和结构,形状描述符则用于捕捉物体的轮廓和几何特性。
在90年代初期,随着大规模数字图像库的建设和计算机视觉技术的进步,CBIR得到了快速发展。许多研究和商业化的图像检索系统开始涌现,这些系统通常采用多种特征提取方法,并结合机器学习算法,以实现更智能的图像匹配。文献中提到的内容提供了关于CBIR领域的深入探讨,包括各种技术的细节和实际应用。
CBIR系统的设计和实现涉及多个方面,包括特征选择、特征提取、相似度度量、索引构建以及查询处理策略等。特征选择是指确定哪些视觉特性对于区分图像最有效;特征提取则是将这些特性转化为可用于比较的形式;相似度度量定义了如何量化两幅图像之间的相似性;索引构建旨在提高检索效率,可能包括使用空间金字塔、颜色词汇树等数据结构;最后,查询处理策略决定了如何根据用户的查询来有效地搜索图像库。
CBIR技术的应用广泛,涵盖了医学影像分析、遥感图像处理、社交媒体图像检索等领域。尽管CBIR已经取得了显著的成就,但仍然面临挑战,如高维特征表示带来的计算复杂性、图像的复杂性和变异性以及跨域检索等问题。未来的研究将继续致力于优化特征表示、提升检索性能以及适应用户交互,以实现更加智能化和人性化的图像检索体验。
2022-09-23 上传
2018-04-09 上传
128 浏览量
2013-07-17 上传
点击了解资源详情
点击了解资源详情
点击了解资源详情
2010-04-14 上传
点击了解资源详情
zergszergs
- 粉丝: 0
- 资源: 3
最新资源
- Refined Microsoft Teams-crx插件
- mtd_nandecctest.rar_单片机开发_Unix_Linux_
- slcartest
- fcuk:旨在帮助手指笨拙的人的AR包
- RTFMbot:Discord bot进行编程,运行代码(600多种lang),查询显示文档和参考
- vue+node+mongodb全栈项目(通用后台系统).zip
- Android中的View.OnLongClickListener不支持长按操作的自定义持续时间。 :sparkles:-Android开发
- Year Progress-crx插件
- HBRecorder:轻量级屏幕录制Android库
- book3s_64_mmu.rar_单片机开发_Unix_Linux_
- Todo List 小项目, Node + Express + MongoDB.zip
- Right-Apprise-ML-Intern:包含Right Apprise在Mentor-Mentee暑期实习计划中完成的所有工作的记录
- color8bit
- SE2Team1Project1:软件工程2的项目1
- 封隔器:webpack + npm + R =:red_heart:
- Splashed-crx插件