深度学习驱动的预训练技术在自然语言处理中的进展

需积分: 4 0 下载量 72 浏览量 更新于2024-08-03 收藏 1.67MB PDF 举报
"面向自然语言处理的预训练技术研究综述.pdf" 这篇论文是对面向自然语言处理的预训练技术的全面研究和综述。近年来,深度学习在自然语言处理(NLP)领域的应用极大地推动了预训练技术的发展。预训练技术是通过在大规模无标注文本数据上学习通用的语言表示,然后在特定任务上进行微调,以提高模型性能的一种方法。 早期的预训练技术主要包括词嵌入模型,如Word2Vec,GloVe等。这些模型通过对词汇的统计学习,生成词向量,为每个单词提供一个固定且独立的表示,用于捕获词汇的语义和上下文信息。然而,它们无法捕捉到词汇在不同语境中的变化,即词汇的动态性。 随着深度学习的进步,特别是Transformer架构的提出,预训练技术进入了新的阶段。BERT(Bidirectional Encoder Representations from Transformers)是这一阶段的代表作,它引入了双向Transformer,允许模型同时考虑词汇的前后文信息,显著提高了预训练模型的表达能力。随后,其他模型如GPT(Generative Pre-trained Transformer)、XLNet、RoBERTa等也相继出现,不断优化预训练策略,如增大训练数据规模、改变预训练目标等,进一步提升了模型的性能。 预训练技术的应用广泛,包括但不限于机器翻译、文本分类、问答系统、情感分析、命名实体识别、语义理解等多个NLP任务。这些模型通常在大规模数据集上进行预训练,然后针对特定任务进行微调,使得模型能更好地适应多样化的NLP应用场景。 论文还可能讨论了预训练技术的挑战与未来发展方向,例如如何降低模型的计算复杂度,减少预训练的资源需求,以及如何解决跨语言理解和多模态信息融合等问题。此外,预训练模型的可解释性和隐私保护也是当前研究的重要方向。 该研究得到了多个项目的资助,包括国家自然科学基金、软件开发环境国家重点实验室课题和北京成像理论与技术高精尖创新中心课题,这表明预训练技术的研究受到学术界和产业界的广泛关注和支持。通信作者李舟军教授及其团队成员(范宇、吴贤杰)在自然语言处理领域有深入的研究,他们的工作对于理解预训练技术的最新进展具有重要的参考价值。
2024-12-26 上传
智慧工地,作为现代建筑施工管理的创新模式,以“智慧工地云平台”为核心,整合施工现场的“人机料法环”关键要素,实现了业务系统的协同共享,为施工企业提供了标准化、精益化的工程管理方案,同时也为政府监管提供了数据分析及决策支持。这一解决方案依托云网一体化产品及物联网资源,通过集成公司业务优势,面向政府监管部门和建筑施工企业,自主研发并整合加载了多种工地行业应用。这些应用不仅全面连接了施工现场的人员、机械、车辆和物料,实现了数据的智能采集、定位、监测、控制、分析及管理,还打造了物联网终端、网络层、平台层、应用层等全方位的安全能力,确保了整个系统的可靠、可用、可控和保密。 在整体解决方案中,智慧工地提供了政府监管级、建筑企业级和施工现场级三类解决方案。政府监管级解决方案以一体化监管平台为核心,通过GIS地图展示辖区内工程项目、人员、设备信息,实现了施工现场安全状况和参建各方行为的实时监控和事前预防。建筑企业级解决方案则通过综合管理平台,提供项目管理、进度管控、劳务实名制等一站式服务,帮助企业实现工程管理的标准化和精益化。施工现场级解决方案则以可视化平台为基础,集成多个业务应用子系统,借助物联网应用终端,实现了施工信息化、管理智能化、监测自动化和决策可视化。这些解决方案的应用,不仅提高了施工效率和工程质量,还降低了安全风险,为建筑行业的可持续发展提供了有力支持。 值得一提的是,智慧工地的应用系统还围绕着工地“人、机、材、环”四个重要因素,提供了各类信息化应用系统。这些系统通过配置同步用户的组织结构、智能权限,结合各类子系统应用,实现了信息的有效触达、问题的及时跟进和工地的有序管理。此外,智慧工地还结合了虚拟现实(VR)和建筑信息模型(BIM)等先进技术,为施工人员提供了更为直观、生动的培训和管理工具。这些创新技术的应用,不仅提升了施工人员的技能水平和安全意识,还为建筑行业的数字化转型和智能化升级注入了新的活力。总的来说,智慧工地解决方案以其创新性、实用性和高效性,正在逐步改变建筑施工行业的传统管理模式,引领着建筑行业向更加智能化、高效化和可持续化的方向发展。