基于竞价模型的动态频谱分配算法及其稳定性分析
49 浏览量
更新于2024-08-27
收藏 365KB PDF 举报
"这篇论文是关于基于竞价模型的频谱分配算法在认知无线网络中的应用。作者们针对授权用户和认知用户之间的频谱共享问题,通过深入研究认知用户对主用户的影响以及其自身的竞价行为,引入了干扰价格和切换代价的概念,构建了一个认知用户的效用函数,并以此为基础建立了一个频谱竞价拍卖模型。利用纳什均衡理论分析了模型的稳定性,进而提出了一种动态频谱分配算法。实验表明,该算法能够确保认知用户的业务带宽需求,同时有效地利用不连续的频谱资源,显著提高频谱使用效率。该研究工作得到了国家自然科学基金和江西省研究生创新专项基金的支持。"
本文的核心知识点包括:
1. **认知无线网络**:这是一种允许非授权用户(认知用户)在不影响授权用户(主用户)通信的情况下,利用空闲频谱资源的技术。它旨在解决频谱利用率低的问题。
2. **频谱共享**:在认知无线网络中,授权用户和认知用户需要共享频谱资源,这需要解决两者之间的公平性和效率问题。
3. **竞价模型**:论文提出的解决方案是基于经济激励的竞价机制,认知用户通过竞价来获取频谱使用权,这有助于优化频谱分配。
4. **效用函数**:为了设计竞价策略,论文引入了认知用户的效用函数,该函数考虑了用户对频谱的需求、干扰成本以及切换到其他频段的代价。
5. **干扰价格**:这是衡量认知用户使用频谱时可能对主用户产生的干扰的成本,引入这一概念使得认知用户在竞价时会考虑到对主用户的潜在影响。
6. **切换代价**:当认知用户需要在不同频段间切换时,会产生一定的切换成本,这个成本也被纳入效用函数,影响用户的决策。
7. **纳什均衡**:论文利用博弈论中的纳什均衡理论来分析频谱竞价拍卖模型的稳定性,确保所有参与者都不会有单方面改变策略的动机。
8. **动态频谱分配算法**:基于上述理论,作者提出了一种动态算法,可以根据实时情况调整频谱分配,兼顾认知用户的带宽需求和整体频谱效率。
9. **仿真验证**:通过理论分析和实验仿真,证明了提出的算法能够在保障认知用户服务的同时,有效利用不连续的频谱,提高了频谱的使用效率。
该研究对于提升认知无线网络的频谱效率和优化资源配置具有重要意义,也为后续相关研究提供了理论基础和实践参考。
2023-08-14 上传
2022-01-25 上传
2023-07-03 上传
2023-07-11 上传
2023-05-31 上传
2023-07-20 上传
2023-05-31 上传
2023-07-11 上传
2023-06-13 上传
weixin_38563871
- 粉丝: 1
- 资源: 959
最新资源
- 修正程序:外汇汇率和货币换算API
- JD-Test
- peanut-note
- Pixel-Show:自2005年以来,Pixel Show是拉丁美洲最大的创意活动。此存储库是为基于Pixel Show的iOS应用创建的
- PPl_lab20
- 大数据-电商订单大数据分析项目-OrderFromTmall.zip
- c代码-109-14z
- UCD-Resume
- curl_http_client:基于Curl的HTTP客户端-Curl php lib周围的简单但有效的OOP包装器
- mrslac:Maciel的Rust稀疏线性代数箱
- C-equivalent-to-Cracking-the-Coding-Interview:练习一些不熟悉的数据结构
- phaser-nineslice:Phaser的NineSlice插件!
- xstream-1.3.1.jar
- cpp代码-164.4.5.2
- keras-ACG-face-alignment:【ACG-face-alignment】ACG脸部对齐
- 基于Java SE 内容写的简单的学生成绩管理系统,用文件存储数据,swing写的界面.zip