深度学习高效处理教程:架构与技术综览

需积分: 50 10 下载量 146 浏览量 更新于2024-07-17 收藏 5.13MB PDF 举报
本文档深入探讨了"Efficient Processing of Deep Neural Networks: A Tutorial and Survey",它作为深度学习领域的重要参考资料,提供了对自本世纪初以来深度学习技术迅猛发展及其在硬件加速方面的最新进展进行全面的概述。深度神经网络(DNNs)凭借其在计算机视觉、语音识别和机器人技术等人工智能应用中的卓越性能,已成为行业的标准。然而,其高度计算复杂性使得能源效率和吞吐量的提升成为亟待解决的问题,同时还需要维持或提高性能准确性和控制硬件成本。 文章首先介绍了深度神经网络的基本概念和原理,强调了在AI系统中广泛应用DNNs所面临的挑战,即如何在保持高性能的同时实现计算效率的提升。接下来,作者详细梳理了各类支持DNN的平台和架构,包括云端服务器、嵌入式设备、专用硬件如GPU和TPU,以及FPGA和ASIC等,这些硬件的不同特性决定了它们在处理深度学习任务时的优势和局限性。 重点部分深入讨论了近期在提高DNN效率方面的主要技术趋势。这包括但不限于: 1. **模型优化**:通过对神经网络结构进行剪枝、量化和蒸馏,降低模型的参数数量和计算复杂度,从而减少运算需求,提高执行速度。 2. **硬件加速**:通过硬件设计的专门化,如GPU的并行计算能力、TPU的矩阵运算优化,以及定制芯片(ASIC)的低延迟和高能效,来加速深度学习任务的处理。 3. **近似计算**:利用近似计算和低精度计算技术,允许在一定程度上牺牲精确度以换取更高的性能,这对于实时应用和移动设备尤其关键。 4. **硬件-software协同**:通过软件层面的优化,如数据预处理、模型编译和硬件调度策略,以及硬件和软件之间的协同工作,来进一步提升整体效率。 5. **动态调度和适应性**:通过动态调整网络执行策略,根据任务需求和硬件资源实时改变计算负载,实现资源的高效利用。 6. **可扩展性和灵活性**:研究如何在不同的硬件环境下实现深度学习模型的无缝迁移,以适应不同场景的需求。 这篇文章是一份宝贵的指南,对于研究人员、工程师和开发者来说,它不仅提供了深度学习基础的回顾,还提供了关于如何在实际应用中实现高效处理DNNs的实用策略和趋势分析,为推动AI系统的广泛应用和发展奠定了坚实的基础。
2018-03-27 上传
Over the past decade, Deep Neural Networks (DNNs) have become very popular models for problems involving massive amounts of data. The most successful DNNs tend to be characterized by several layers of parametrized linear and nonlinear transformations, such that the model contains an immense number of parameters. Empirically, we can see that networks structured according to these ideals perform well in practice. However, at this point we do not have a full rigorous understanding of why DNNs work so well, and how exactly to construct neural networks that perform well for a specific problem. This book is meant as a first step towards forming this rigorous understanding: we develop a generic mathematical framework for representing neural networks and demonstrate how this framework can be used to represent specific neural network architectures. We hope that this framework will serve as a common mathematical language for theoretical neural network researchers—something which currently does not exist—and spur further work into the analytical properties of DNNs. We begin in Chap. 1 by providing a brief history of neural networks and exploring mathematical contributions to them. We note what we can rigorously explain about DNNs, but we will see that these results are not of a generic nature. Another topic that we investigate is current neural network representations: we see that most approaches to describing DNNs rely upon decomposing the parameters and inputs into scalars, as opposed to referencing their underlying vector spaces, which adds a level of awkwardness into their analysis. On the other hand, the framework that we will develop strictly operates over these vector spaces, affording a more natural mathematical description of DNNs once the objects that we use are well defined and understood.