随机抽取样本算法:从N个数组中抽取M个不重复元素
需积分: 0 115 浏览量
更新于2024-08-05
收藏 898KB PDF 举报
"这篇文档介绍了一种从大小为N的数组中随机抽取M个不重复元素的算法。作者强调该算法经过测试效果良好,并且主要关注如何避免重复抽取和提高效率。算法的核心在于使用列表记录已抽取的位置,并动态调整随机数的范围,以确保抽取的样本不重复。代码示例使用Java实现,包含了一个名为`RandomUtil`的类,其中的`testChance`方法用于测试算法的准确性和效率。"
这篇文档讨论的算法是针对数据抽样的问题,特别是在一个整数数组中抽取特定数量不重复元素的策略。在统计学和数据分析中,这样的操作称为无放回抽样,因为一旦某个元素被选中,它就不会再次被考虑。在这个场景下,目标是从一个大小为N的数组中抽取M个不同的元素。
算法的实现步骤如下:
1. 准备两个数组,一个是原始数据数组`num1`,另一个是用于存储抽样结果的数组`num2`。
2. 使用一个循环执行M次,每次循环中:
- 随机生成一个介于1到(N-M+1)之间的整数。这个范围确保不会超出剩余可抽取的位置。
- 将生成的随机数i映射回原始数组的索引,即实际位置为(i-1)。
- 将找到的元素添加到结果数组`num2`中。
- 记录已抽取的位置,防止重复抽取。
3. 在抽取过程中,不需要实际删除已选中的元素,而是通过维护一个记录已选位置的列表来跟踪哪些位置已被占用。
为了提高效率,算法避免了每次抽取后重建数组的过程,而是通过更新随机数生成的范围来减少重复的可能性。这种做法减少了数组操作的复杂性,从而提高了整体性能。
在提供的Java代码中,`RandomUtil`类的`testChance`方法可能用于对算法进行大量测试,以验证其准确性和运行时间。`main`方法中的注释表明,可以通过调用`testChance`来测试不同参数下的抽样效果,例如在9个元素中抽取3个,重复100,000次。
这个算法提供了一种高效的方法来从一个群体中抽取不重复的样本,特别适用于大数据集和需要快速抽样的情况。通过避免不必要的数组操作和利用列表跟踪已抽取元素,它能够在保持正确性的同时提高效率。
2020-12-10 上传
2021-06-01 上传
点击了解资源详情
点击了解资源详情
点击了解资源详情
点击了解资源详情
点击了解资源详情
点击了解资源详情
点击了解资源详情
ShepherdYoung
- 粉丝: 40
- 资源: 337
最新资源
- ballista:现代网络的互操作性系统
- gsheet-planner:聪明的,可自动排序的Google表格计划器
- 翻译翻译什么叫HTML5(一)配套代码资源包
- Towering Yoga Masters Free Game-crx插件
- 我的
- Toolint-tests-Empty-TC-Add-Tools-2021-03-11T20-17-21.121Z:为工具链创建
- List:用CodeSandbox创建
- timecat-mmo::smiling_cat_with_heart-eyes: 时间猫,但是一个 MMO
- 视觉暂留测试工具-crx插件
- 变色龙:BAOBAB服务器的“第二层”模型交互层
- Perifa_Acessa:Com recursos de voz(acessibilidade)podendo ser a Alexa(Firefox)ou o Watson(Microsoft),Recursos de Hand Talk eImplementaçõesde melhorias a fazer,esteéum eta(protótipo)
- posterus:具有取消功能,可调度控制和协程的可组合异步原语(期货)
- OS-Places:演示和代码示例的OS Places存储库
- Commando Girl Free Games-crx插件
- PSTools GUI:PSTools 的图形前端-开源
- 彼得里斯