ADC性能指标详解:积分非线性、微分非线性等

需积分: 50 58 下载量 48 浏览量 更新于2024-08-08 收藏 1.44MB PDF 举报
"这篇文档详细讨论了数字信号处理中的rigid body dynamics algorithms,并与TMS320F28027系列微控制器关联。该系列微控制器是Texas Instruments生产的Piccolo微控制器,具备高性能32位CPU和多种低功耗特性。文档中涉及的关键概念包括积分非线性、微分非线性、零偏移、增益误差、信噪比加失真(SINAD)、有效位数(ENOB)、总谐波失真(THD)和无杂散动态范围(SFDR)。这些参数是评估模拟到数字转换器(ADC)性能的重要指标。" 详详细细说说明明-rigid body dynamics algorithms,这部分内容可能是指在数字控制系统中,如何处理刚体动力学算法的细节,但具体到ADC性能的描述,我们可以深入理解以下几个概念: 1. **积分非线性**:积分非线性(INL)描述的是ADC转换过程中,实际输出代码与理想直线之间的偏差。当输入信号线性变化时,ADC输出代码的线性度可能不完美,导致从零刻度到满刻度的线性偏离。 2. **微分非线性**:微分非线性(DNL)关注的是相邻代码之间的间隔,理想情况下应为1 LSB。如果DNL误差小于±1 LSB,可以保证没有码间丢失,即连续输入变化不会导致跳过任何代码。 3. **零偏移**:当模拟输入为零时,ADC应产生主进位的转换。零偏移误差是实际转换点与零伏点的偏离,表示ADC的零点精度。 4. **增益误差**:增益误差描述的是ADC的第一次和最后一次转换相对于理想位置的偏差,它反映了ADC对输入信号放大比例的准确性。 5. **信噪比加失真(SINAD)**:SINAD是输入信号的信号功率与所有其他低于奈奎斯特频率的频谱成分(包括谐波但不包括直流分量)功率之和的比值,通常以分贝表示,是衡量ADC性能的重要指标。 6. **有效位数(ENOB)**:ENOB表示在给定输入频率下,ADC能够提供的等效无噪声比特数,可通过SINAD计算得出,反映了系统的量化噪声水平。 7. **总谐波失真(THD)**:THD是输入信号的基波与所有谐波分量的均方根和与输入信号的均方根值之比,以百分比或分贝表示,用于衡量信号失真的程度。 8. **无杂散动态范围(SFDR)**:SFDR是输入信号的幅度与ADC产生的最大寄生信号幅度之差,通常以分贝表示,它体现了ADC在处理信号时抑制不需要的信号成分的能力。 TMS320F28027等Piccolo微控制器家族提供了这些性能指标,适用于需要精确数字信号处理的应用,如工业自动化、电机控制和音频处理等。这些特性使得这些微控制器在要求高性能和低功耗的系统中成为理想选择。
2017-05-10 上传
Rigid Body Dynamics Algorithms presents the subject of computational rigid-body dynamics through the medium of spatial 6D vector notation. It explains how to model a rigid-body system and how to analyze it, and it presents the most comprehensive collection of the best rigid-body dynamics algorithms to be found in a single source. The use of spatial vector notation greatly reduces the volume of algebra which allows systems to be described using fewer equations and fewer quantities. It also allows problems to be solved in fewer steps, and solutions to be expressed more succinctly. In addition algorithms are explained simply and clearly, and are expressed in a compact form. The use of spatial vector notation facilitates the implementation of dynamics algorithms on a computer: shorter, simpler code that is easier to write, understand and debug, with no loss of efficiency. Unique features include: • A comprehensive collection of the best rigid-body dynamics algorithms • Use of spatial (6D) vectors to greatly reduce the volume of algebra, to simplify the treatment of the subject, and to simplify the computer code that implements the algorithms • Algorithms expressed both mathematically and in pseudocode for easy translation into computer programs • Source code for many algorithms available on the internet Rigid Body Dynamics Algorithms is aimed at readers who already have some elementary knowledge of rigid-body dynamics, and are interested in calculating the dynamics of a rigid-body system. This book serves as an algorithms recipe book as well as a guide to the analysis and deeper understanding of rigid-body systems.