苹果iOS入门:Ray Wenderlich出品的机器学习教程

5星 · 超过95%的资源 需积分: 10 86 下载量 146 浏览量 更新于2024-07-18 9 收藏 74.63MB PDF 举报
"《Machine Learning by Tutorials v0.2》是由Matthijs Hollemans、Chris La Pollo和Audrey Tam合作编写的教程,由Razeware LLC出版,专为Apple和iOS开发者设计,旨在入门机器学习。该教程版权受保护,未经版权所有者事先书面许可,不得复制或分发任何部分,包括文本、图像和源代码。本书和相关材料提供"按原样"使用,不附带任何明示或暗示的保证,包括但不限于适销性、特定用途的适用性和非侵权性。 书中强调,作者和版权持有者不对软件本身或因使用软件而产生的任何索赔、损害或其他责任负责,无论是合同、侵权还是其他法律原因。此外,书中提到的所有商标和注册商标均为各自所有者的财产。《Machine Learning by Tutorials》是一本深入浅出的指南,旨在帮助读者掌握在iOS平台上进行机器学习的基础知识和技术,适合那些希望在这个领域起步或扩展技能的开发人员。 该教程可能包含理论概念、实践示例以及用于构建实际项目的代码,旨在通过交互式学习和实操来教授读者如何构建机器学习模型,如分类、回归、聚类等,以及如何应用深度学习技术如神经网络在iOS应用中。书中可能还会涵盖数据预处理、特征工程、模型训练和评估的关键步骤,同时介绍常用的机器学习库和框架,如TensorFlow Lite和Core ML。 为了方便读者,教程可能以网站的形式(raywenderlich.com)提供配套资源,包括视频教程、练习项目和社区支持,以确保学习者能够全面理解和应用所学知识。最后,这本书是对Floortje的献词,感谢她带来的陪伴和支持。 《Machine Learning by Tutorials v0.2》是为iOS开发者打造的一本实用且系统化的机器学习入门教材,适合希望通过实战学习并在移动应用中实现智能功能的专业人士使用。"
2018-06-05 上传
Preface Machine learning algorithms dominate applied machine learning. Because algorithms are such a big part of machine learning you must spend time to get familiar with them and really understand how they work. I wrote this book to help you start this journey. You can describe machine learning algorithms using statistics, probability and linear algebra. The mathematical descriptions are very precise and often unambiguous. But this is not the only way to describe machine learning algorithms. Writing this book, I set out to describe machine learning algorithms for developers (like myself). As developers, we think in repeatable procedures. The best way to describe a machine learning algorithm for us is: 1. In terms of the representation used by the algorithm (the actual numbers stored in a file). 2. In terms of the abstract repeatable procedures used by the algorithm to learn a model from data and later to make predictions with the model. 3. With clear worked examples showing exactly how real numbers plug into the equations and what numbers to expect as output. This book cuts through the mathematical talk around machine learning algorithms and shows you exactly how they work so that you can implement them yourself in a spreadsheet, in code with your favorite programming language or however you like. Once you possess this intimate knowledge, it will always be with you. You can implement the algorithms again and again. More importantly, you can translate the behavior of an algorithm back to the underlying procedure and really know what is going on and how to get the most from it. This book is your tour of machine learning algorithms and I’m excited and honored to be your tour guide. Let’s dive in.