没有合适的资源?快使用搜索试试~ 我知道了~
首页PCI Express Base Specification Revision 3.1 内部审查问题汇总
PCI Express Base Specification Revision 3.1 内部审查问题汇总
需积分: 13 2 下载量 194 浏览量
更新于2024-07-18
收藏 17.07MB PDF 举报
"PCI Express Base Specification Revision 3.1是PCI特殊兴趣小组(PCISIG)在2013年11月7日发布的会员评审草案,文档中指出了一些编辑问题,这些问题将在会员评审结束后发布的版本中得到修正。"
PCI Express(Peripheral Component Interconnect Express),简称PCIe,是一种高速接口标准,用于计算机系统中的外部设备通信,如显卡、网卡、硬盘等。该技术基于串行连接,与传统的并行PCI总线相比,提供了更高的数据传输速率和更低的总线占用。
Base Specification Revision 3.1是PCIe规范的一个版本,其中包含了对PCI Express接口的详细定义和技术规范。此版本的文档中提到了一些编辑性问题,例如:
1. 在第64页的第9-11行,一个句子与后续的标题错误地合并了。正确的表述应该是:某些内存交易可以可选地包含一个PASID TLP前缀,该前缀含有过程地址空间ID(PASID)。PASID是用于多进程环境下的标识,帮助系统识别和调度不同进程间的内存访问。
2. 在1.1.2章节的I/O交易部分,第116页底部到117页顶部存在不合适的换行。
3. 在第126页的第5-6行,也存在换行问题,可能影响了阅读的连贯性。
4. 在第295页的第23行,“Else”应该是一个二级标题(即开放的圆形子弹点),以清晰表明它与第10行的“如果”条件匹配,而不是与第9行的“如果”相关联。
5. 在第528-529页,有紫色的文本应为黑色,可能是打印或显示颜色设置的错误。
6. 最后,在第960页的第27行,这个子弹点是前面第25行概念的扩展,这两条应合并为同一段落,以保持逻辑清晰。
这些编辑问题反映了规范文档的细节处理和一致性,虽然不影响PCIe技术的核心概念,但修正这些问题对于确保用户和开发者正确理解和实施PCIe规范至关重要。在最终版本中,这些问题的修复将提供一个更准确、更易读的参考指南,以支持和促进PCI Express技术在各种硬件设计中的有效应用。
PCI EXPRESS BASE SPECIFICATION, REV. 3.1
16
Figures
FIGURE 1-1: PCI EXPRESS LINK .................................................................................................... 49
FIGURE 1-2: EXAMPLE TOPOLOGY ................................................................................................ 50
FIGURE 1-3: LOGICAL BLOCK DIAGRAM OF A SWITCH ................................................................. 54
FIGURE 1-4: HIGH-LEVEL LAYERING DIAGRAM ........................................................................... 56
FIGURE 1-5: PACKET FLOW THROUGH THE LAYERS ..................................................................... 57
FIGURE 2-1: LAYERING DIAGRAM HIGHLIGHTING THE TRANSACTION LAYER .............................. 62
FIGURE 2-2: SERIAL VIEW OF A TLP ............................................................................................. 65
FIGURE 2-3: GENERIC TLP FORMAT ............................................................................................. 66
FIGURE 2-4: FIELDS PRESENT IN ALL TLPS .................................................................................. 67
FIGURE 2-5: FIELDS PRESENT IN ALL TLP HEADERS .................................................................... 68
FIGURE 2-6: EXAMPLES OF COMPLETER TARGET MEMORY ACCESS FOR FETCHADD ................... 73
FIGURE 2-7: 64-BIT ADDRESS ROUTING ........................................................................................ 75
FIGURE 2-8: 32-BIT ADDRESS ROUTING ........................................................................................ 75
FIGURE 2-9: ID ROUTING WITH 4 DW HEADER ............................................................................ 77
FIGURE 2-10: ID ROUTING WITH 3 DW HEADER .......................................................................... 78
FIGURE 2-11: LOCATION OF BYTE ENABLES IN TLP HEADER ....................................................... 79
FIGURE 2-12: TRANSACTION DESCRIPTOR .................................................................................... 81
FIGURE 2-13: TRANSACTION ID .................................................................................................... 82
FIGURE 2-14: ATTRIBUTES FIELD OF TRANSACTION DESCRIPTOR ................................................ 84
FIGURE 2-15: REQUEST HEADER FORMAT FOR 64-BIT ADDRESSING OF MEMORY ........................ 88
FIGURE 2-16: REQUEST HEADER FORMAT FOR 32-BIT ADDRESSING OF MEMORY ........................ 88
FIGURE 2-17: REQUEST HEADER FORMAT FOR I/O TRANSACTIONS .............................................. 89
FIGURE 2-18: REQUEST HEADER FORMAT FOR CONFIGURATION TRANSACTIONS ........................ 90
FIGURE 2-19: TPH TLP PREFIX .................................................................................................... 91
FIGURE 2-20: LOCATION OF PH[1:0] IN A 4 DW REQUEST HEADER ............................................. 91
FIGURE 2-21: LOCATION OF PH[1:0] IN A 3 DW REQUEST HEADER ............................................. 92
FIGURE 2-22: LOCATION OF ST[7:0] IN THE MEMORY WRITE REQUEST HEADER ......................... 93
FIGURE 2-23: LOCATION OF ST[7:0] IN MEMORY READ AND ATOMICOP REQUEST HEADERS ..... 93
FIGURE 2-24: MESSAGE REQUEST HEADER .................................................................................. 95
FIGURE 2-25: HEADER FOR VENDOR-DEFINED MESSAGES ......................................................... 105
FIGURE 2-26: HEADER FOR PCI-SIG-DEFINED VDMS ................................................................ 106
FIGURE 2-27: LN MESSAGE ......................................................................................................... 108
FIGURE 2-28: DRS MESSAGE ...................................................................................................... 109
FIGURE 2-29: FRS MESSAGE ...................................................................................................... 111
FIGURE 2-30: LTR MESSAGE ...................................................................................................... 112
FIGURE 2-31: OBFF MESSAGE ................................................................................................... 113
FIGURE 2-32: PTM REQUEST/RESPONSE MESSAGE ..................................................................... 114
FIGURE 2-33: PTM RESPONSED MESSAGE (4 DW HEADER AND 1 DW PAYLOAD) ...................... 115
FIGURE 2-34: COMPLETION HEADER FORMAT ............................................................................ 116
FIGURE 2-35: (NON-ARI) COMPLETER ID .................................................................................. 117
FIGURE 2-36: ARI COMPLETER ID .............................................................................................. 117
FIGURE 2-37: FLOWCHART FOR HANDLING OF RECEIVED TLPS ................................................. 124
FIGURE 2-38: FLOWCHART FOR SWITCH HANDLING OF TLPS ..................................................... 126
Member Review Draft
PCI EXPRESS BASE SPECIFICATION, REV. 3.1
17
FIGURE 2-39: FLOWCHART FOR HANDLING OF RECEIVED REQUEST ........................................... 131
FIGURE 2-40: VIRTUAL CHANNEL CONCEPT – AN ILLUSTRATION .............................................. 148
FIGURE 2-41: VIRTUAL CHANNEL CONCEPT – SWITCH INTERNALS (UPSTREAM FLOW) ............. 148
FIGURE 2-42: AN EXAMPLE OF TC/VC CONFIGURATIONS .......................................................... 151
FIGURE 2-43: RELATIONSHIP BETWEEN REQUESTER AND ULTIMATE COMPLETER ..................... 152
FIGURE 2-44: CALCULATION OF 32-BIT ECRC FOR TLP END TO END DATA INTEGRITY
PROTECTION ........................................................................................................................ 167
FIGURE 3-1: LAYERING DIAGRAM HIGHLIGHTING THE DATA LINK LAYER ................................ 175
FIGURE 3-2: DATA LINK CONTROL AND MANAGEMENT STATE MACHINE .................................. 178
FIGURE 3-3: VC0 FLOW CONTROL INITIALIZATION EXAMPLE WITH 8B/10B ENCODING-BASED
FRAMING ............................................................................................................................. 183
FIGURE 3-4: DLLP TYPE AND CRC FIELDS ................................................................................ 184
FIGURE 3-5: DATA LINK LAYER PACKET FORMAT FOR ACK AND NAK ....................................... 186
FIGURE 3-6: DATA LINK LAYER PACKET FORMAT FOR INITFC1 ................................................ 186
FIGURE 3-7: DATA LINK LAYER PACKET FORMAT FOR INITFC2 ................................................ 186
FIGURE 3-8: DATA LINK LAYER PACKET FORMAT FOR UPDATEFC ............................................ 187
FIGURE 3-9: PM DATA LINK LAYER PACKET FORMAT ............................................................... 187
FIGURE 3-10: VENDOR SPECIFIC DATA LINK LAYER PACKET FORMAT ...................................... 187
FIGURE 3-11: DIAGRAM OF CRC CALCULATION FOR DLLPS ..................................................... 188
FIGURE 3-12: TLP WITH LCRC AND TLP SEQUENCE NUMBER APPLIED ................................... 189
FIGURE 3-13: TLP FOLLOWING APPLICATION OF TLP SEQUENCE NUMBER AND RESERVED BITS
............................................................................................................................................. 191
FIGURE 3-14: CALCULATION OF LCRC ...................................................................................... 193
FIGURE 3-15: RECEIVED DLLP ERROR CHECK FLOWCHART ...................................................... 201
FIGURE 3-16: ACK/NAK DLLP PROCESSING FLOWCHART .......................................................... 202
FIGURE 3-17: RECEIVE DATA LINK LAYER HANDLING OF TLPS ................................................ 206
FIGURE 4-1: LAYERING DIAGRAM HIGHLIGHTING PHYSICAL LAYER .......................................... 211
FIGURE 4-2: CHARACTER TO SYMBOL MAPPING ......................................................................... 212
FIGURE 4-3: BIT TRANSMISSION ORDER ON PHYSICAL LANES - X1 EXAMPLE ............................ 213
FIGURE 4-4: BIT TRANSMISSION ORDER ON PHYSICAL LANES - X4 EXAMPLE ............................ 213
FIGURE 4-5: TLP WITH FRAMING SYMBOLS APPLIED ................................................................. 216
FIGURE 4-6: DLLP WITH FRAMING SYMBOLS APPLIED .............................................................. 217
FIGURE 4-7: FRAMED TLP ON A X1 LINK .................................................................................... 217
FIGURE 4-8: FRAMED TLP ON A X2 LINK .................................................................................... 218
FIGURE 4-9: FRAMED TLP ON A X4 LINK .................................................................................... 218
FIGURE 4-10: LFSR WITH SCRAMBLING POLYNOMIAL ............................................................... 220
FIGURE 4-11: EXAMPLE OF BIT TRANSMISSION ORDER IN A X1 LINK SHOWING 130 BITS OF A
BLOCK ................................................................................................................................. 221
FIGURE 4-12: EXAMPLE OF BIT PLACEMENT IN A X4 LINK WITH ONE BLOCK PER LANE ............ 221
FIGURE 4-13: LAYOUT OF FRAMING TOKENS .............................................................................. 225
FIGURE 4-14: TLP AND DLLP LAYOUT ...................................................................................... 227
FIGURE 4-15: PACKET TRANSMISSION IN A X8 LINK ................................................................... 227
FIGURE 4-16: NULLIFIED TLP LAYOUT IN A X8 LINK WITH OTHER PACKETS ............................. 228
FIGURE 4-17: SKP ORDERED SET OF LENGTH 66-BIT IN A X8 LINK ............................................ 228
FIGURE 4-18: LFSR WITH SCRAMBLING POLYNOMIAL IN 8.0 GT/S AND ABOVE DATA RATE .... 235
FIGURE 4-19: ALTERNATE IMPLEMENTATION OF THE LFSR FOR DESCRAMBLING ...................... 237
Member Review Draft
PCI EXPRESS BASE SPECIFICATION, REV. 3.1
18
FIGURE 4-20: EQUALIZATION FLOW............................................................................................ 243
FIGURE 4-21: ELECTRICAL IDLE EXIT ORDERED SET FOR 8.0 GT/S AND ABOVE DATA RATES ... 254
FIGURE 4-22: MAIN STATE DIAGRAM FOR LINK TRAINING AND STATUS STATE MACHINE ........ 269
FIGURE 4-23: DETECT SUBSTATE MACHINE ............................................................................... 271
FIGURE 4-24: POLLING SUBSTATE MACHINE .............................................................................. 279
FIGURE 4-25: CONFIGURATION SUBSTATE MACHINE .................................................................. 294
FIGURE 4-26: RECOVERY SUBSTATE MACHINE ........................................................................... 315
FIGURE 4-27: L0S SUBSTATE MACHINE ...................................................................................... 322
FIGURE 4-28: L1 SUBSTATE MACHINE ........................................................................................ 324
FIGURE 4-29: L2 SUBSTATE MACHINE ........................................................................................ 326
FIGURE 4-30: LOOPBACK SUBSTATE MACHINE ........................................................................... 331
FIGURE 4-31: TRANSMITTER, CHANNEL, AND RECEIVER BOUNDARIES ...................................... 345
FIGURE 4-32: REQUIRED SETUP FOR CHARACTERIZING A 5.0 GT/S TRANSMITTER ..................... 346
FIGURE 4-33: ALLOWABLE SETUP FOR CHARACTERIZING A 2.5 GT/S TRANSMITTER ................. 346
FIGURE 4-34: TX TEST BOARD EXAMPLE .................................................................................... 347
FIGURE 4-35: SINGLE-ENDED AND DIFFERENTIAL LEVELS .......................................................... 349
FIGURE 4-36: FULL SWING SIGNALING VOLTAGE PARAMETERS SHOWING -6 DB DE-EMPHASIS 350
FIGURE 4-37: REDUCED SWING TX PARAMETERS ....................................................................... 350
FIGURE 4-38: MINIMUM PULSE WIDTH DEFINITION ................................................................... 351
FIGURE 4-39: FULL SWING TX PARAMETERS SHOWING DE-EMPHASIS ....................................... 352
FIGURE 4-40: MEASURING FULL SWING/DE-EMPHASIZED VOLTAGES FROM EYE DIAGRAM ...... 353
FIGURE 4-41: TX EQUALIZATION FIR REPRESENTATION ............................................................ 355
FIGURE 4-42: DEFINITION OF TX VOLTAGE LEVELS AND EQUALIZATION RATIOS ...................... 356
FIGURE 4-43: WAVEFORM MEASUREMENT POINTS FOR PRE-SHOOT AND DE-EMPHASIS ............ 357
FIGURE 4-44: V
TX-FS-NO-EQ
MEASUREMENT ................................................................................ 360
FIGURE 4-45: TXEQ COEFFICIENT SPACE TRIANGULAR MATRIX EXAMPLE ............................... 361
FIGURE 4-46: MEASURING V
TX-EIEOS-FS
AND V
TX-EIEOS-RS
........................................................... 362
FIGURE 4-47: COMPLIANCE PATTERN AND RESULTING PACKAGE LOSS TEST WAVEFORM ........ 363
FIGURE 4-48: TRANSMITTER MARGINING VOLTAGE LEVELS AND CODES .................................. 364
FIGURE 4-49: PLOT OF TRANSMITTER HPF FILTER FUNCTIONS .................................................. 366
FIGURE 4-50: ALGORITHM TO REMOVE DE-EMPHASIS INDUCED JITTER ..................................... 367
FIGURE 4-51: EXAMPLE OF DE-EMPHASIS JITTER REMOVAL ....................................................... 368
FIGURE 4-52: RELATION BETWEEN DATA EDGE PDFS AND RECOVERED DATA CLOCK ............. 370
FIGURE 4-53: DERIVATION OF T
TX-UTJ
AND T
TX-UDJDD
................................................................ 370
FIGURE 4-54: PWJ RELATIVE TO CONSECUTIVE EDGES 1 UI APART .......................................... 371
FIGURE 4-55: DEFINITION OF T
TX-UPW-DJDD
AND T
TX-UPW-TJ
........................................................ 372
FIGURE 4-56: TX, RX DIFFERENTIAL RETURN LOSS MASK ......................................................... 372
FIGURE 4-57: TX, RX COMMON MODE RETURN LOSS MASK ...................................................... 373
FIGURE 4-58: CALIBRATION CHANNEL VALIDATION .................................................................. 380
FIGURE 4-59: CALIBRATION CHANNEL SHOWING T
MIN-PULSE
...................................................... 380
FIGURE 4-60: CALIBRATION CHANNEL |S
11
| PLOT WITH TOLERANCE LIMITS .............................. 381
FIGURE 4-61: SETUP FOR CALIBRATING RECEIVER TEST CIRCUIT INTO A REFERENCE LOAD ..... 381
FIGURE 4-62: SETUP FOR TESTING RECEIVER ............................................................................. 382
FIGURE 4-63: RECEIVER EYE MARGINS ...................................................................................... 385
FIGURE 4-64: SIGNAL AT RECEIVER REFERENCE LOAD SHOWING MIN/MAX SWING .................. 386
FIGURE 4-65: RX TESTBOARD TOPOLOGY ................................................................................... 387
Member Review Draft
PCI EXPRESS BASE SPECIFICATION, REV. 3.1
19
FIGURE 4-66: INSERTION LOSS GUIDELINES FOR CALIBRATION/BREAKOUT CHANNELS ............. 388
FIGURE 4-67: BEHAVIORAL CDR MODEL FOR RX MEASUREMENT ............................................ 389
FIGURE 4-68: TRANSFER FUNCTION FOR BEHAVIORAL CTLE .................................................... 390
FIGURE 4-69: LOSS CURVES FOR BEHAVIORAL CTLE ................................................................ 390
FIGURE 4-70: EQUATION AND FLOW DIAGRAM FOR 1-TAP DFE ................................................. 391
FIGURE 4-71: SETUP FOR CALIBRATING THE STRESSED VOLTAGE EYE ...................................... 392
FIGURE 4-72: LAYOUT FOR STRESSED VOLTAGE TESTING OF RECEIVER .................................... 394
FIGURE 4-73: LAYOUT FOR CALIBRATING THE STRESSED JITTER EYE ........................................ 395
FIGURE 4-74: SWEPT SJ MASK .................................................................................................... 396
FIGURE 4-75: LAYOUT FOR JITTER TESTING COMMON REFCLK RX ............................................ 397
FIGURE 4-76: LAYOUT FOR JITTER TESTING DATA CLOCKED REFCLK RX .................................. 397
FIGURE 4-77: SWEPT SJ MASK .................................................................................................... 398
FIGURE 4-78: EXIT FROM IDLE VOLTAGE AND TIME MARGINS ................................................... 402
FIGURE 4-79: A 30 KHZ BEACON SIGNALING THROUGH A 75 NF CAPACITOR ............................ 407
FIGURE 4-80: BEACON, WHICH INCLUDES A 2-NS PULSE THROUGH A 75 NF CAPACITOR ........... 407
FIGURE 4-81: SIMULATION ENVIRONMENT FOR CHARACTERIZING CHANNEL ............................. 409
FIGURE 4-82: EXTRACTING EYE MARGINS FROM CHANNEL SIMULATION RESULTS ................... 413
FIGURE 4-83: MULTI-SEGMENT CHANNEL EXAMPLE .................................................................. 414
FIGURE 4-84: FLOW DIAGRAM FOR CHANNEL TOLERANCING ..................................................... 415
FIGURE 4-85: TX/RX BEHAVIORAL PACKAGE MODELS .............................................................. 416
FIGURE 4-86: BEHAVIORAL TX AND RX S-PARAMETER FILE DETAILS ....................................... 416
FIGURE 4-87: DERIVATION OF JITTER PARAMETERS IN TABLE 4-26 ............................................ 419
FIGURE 4-88: EH, EW MASK ...................................................................................................... 419
FIGURE 4-89: REFCLK TEST SETUP ............................................................................................. 422
FIGURE 4-90: COMMON REFCLK RX ARCHITECTURE .................................................................. 423
FIGURE 4-91: REFCLK TRANSPORT DELAY PATHS FOR A COMMON REFCLK RX ARCHITECTURE 424
FIGURE 4-92: DATA CLOCKED RX ARCHITECTURE ..................................................................... 426
FIGURE 4-93: SEPARATE REFCLK WITH NO SSC (SRNS) ARCHITECTURE ................................. 428
FIGURE 4-94: SEPARATE REFCLK WITH INDEPENDENT SSC ARCHITECTURE .............................. 429
FIGURE 4-95: INFORMATIVE CDR JITTER TRANSFER FUNCTION FOR THE SEPARATE REFCLK WITH
INDEPENDENT SSC (SRIS) ARCHITECTURE AT 5.0 GT/S ..................................................... 430
FIGURE 4-96: 8.0 GT/S COMMON REFCLK RX ARCHITECTURE WITH ω
N
, ζ LIMITS ..................... 433
FIGURE 4-97: 8.0 GT/S DATA CLOCKED RX ARCHITECTURE WITH ω
N
, ζ LIMITS ........................ 435
FIGURE 4-98: INFORMATIVE CDR JITTER TRANSFER FUNCTION FOR THE SEPARATE REFCLK WITH
INDEPENDENT SSC (SRIS) ARCHITECTURE AT 8.0 GT/S ..................................................... 437
FIGURE 5-1: LINK POWER MANAGEMENT STATE FLOW DIAGRAM ............................................. 443
FIGURE 5-2: ENTRY INTO THE L1 LINK STATE ............................................................................ 451
FIGURE 5-3: EXIT FROM L1 LINK STATE INITIATED BY UPSTREAM COMPONENT ........................ 454
FIGURE 5-4: CONCEPTUAL DIAGRAMS SHOWING TWO EXAMPLE CASES OF WAKE# ROUTING . 457
FIGURE 5-5: A CONCEPTUAL PME CONTROL STATE MACHINE .................................................. 461
FIGURE 5-6: L1 TRANSITION SEQUENCE ENDING WITH A REJECTION (L0S ENABLED) ................ 474
FIGURE 5-7: L1 SUCCESSFUL TRANSITION SEQUENCE ................................................................ 475
FIGURE 5-8: EXAMPLE OF L1 EXIT LATENCY COMPUTATION ..................................................... 477
FIGURE 5-9: STATE DIAGRAM FOR L1 PM SUBSTATES ................................................................ 483
FIGURE 5-10: DOWNSTREAM PORT WITH A SINGLE PLL ............................................................. 484
FIGURE 5-11: MULTIPLE DOWNSTREAM PORTS WITH A SHARED PLL ......................................... 485
Member Review Draft
PCI EXPRESS BASE SPECIFICATION, REV. 3.1
20
FIGURE 5-12: EXAMPLE: L1.1 WAVEFORMS ILLUSTRATING UPSTREAM PORT INITIATED EXIT ... 487
FIGURE 5-13: EXAMPLE: L1.1 WAVEFORMS ILLUSTRATING DOWNSTREAM PORT INITIATED EXIT
............................................................................................................................................. 488
FIGURE 5-14: L1.2 SUBSTATES .................................................................................................... 489
FIGURE 5-15: EXAMPLE: ILLUSTRATION OF BOUNDARY CONDITION DUE TO DIFFERENT SAMPLING
OF
CLKREQ# ...................................................................................................................... 490
FIGURE 5-16: EXAMPLE: L1.2 WAVEFORMS ILLUSTRATING UPSTREAM PORT INITIATED EXIT ... 492
FIGURE 5-17: EXAMPLE: L1.2 WAVEFORMS ILLUSTRATING DOWNSTREAM PORT INITIATED EXIT
............................................................................................................................................. 492
FIGURE 6-1: ERROR CLASSIFICATION .......................................................................................... 502
FIGURE 6-2: FLOWCHART SHOWING SEQUENCE OF DEVICE ERROR SIGNALING AND LOGGING
OPERATIONS ........................................................................................................................ 519
FIGURE 6-3: PSEUDO LOGIC DIAGRAM FOR ERROR MESSAGE CONTROLS .................................. 520
FIGURE 6-4: TC FILTERING EXAMPLE ......................................................................................... 540
FIGURE 6-5: TC TO VC MAPPING EXAMPLE ............................................................................... 541
FIGURE 6-6: AN EXAMPLE OF TRAFFIC FLOW ILLUSTRATING INGRESS AND EGRESS .................. 542
FIGURE 6-7: AN EXAMPLE OF DIFFERENTIATED TRAFFIC FLOW THROUGH A SWITCH ................ 543
FIGURE 6-8: SWITCH ARBITRATION STRUCTURE ......................................................................... 544
FIGURE 6-9: VC ID AND PRIORITY ORDER – AN EXAMPLE ......................................................... 545
FIGURE 6-10: MULTI-FUNCTION ARBITRATION MODEL .............................................................. 548
FIGURE 6-11: ROOT COMPLEX REPRESENTED AS A SINGLE COMPONENT ................................... 582
FIGURE 6-12: ROOT COMPLEX REPRESENTED AS MULTIPLE COMPONENTS ................................ 583
FIGURE 6-13: EXAMPLE SYSTEM TOPOLOGY WITH ARI DEVICES ............................................... 596
FIGURE 6-14: SEGMENTATION OF THE MULTICAST ADDRESS RANGE ......................................... 598
FIGURE 6-15: LATENCY FIELDS FORMAT FOR LTR MESSAGES ................................................... 616
FIGURE 6-16: CLKREQ# AND CLOCK POWER MANAGEMENT ................................................... 620
FIGURE 6-17: USE OF LTR AND CLOCK POWER MANAGEMENT .................................................. 621
FIGURE 6-18: CODES AND EQUIVALENT WAKE# PATTERNS ...................................................... 623
FIGURE 6-19: EXAMPLE PLATFORM TOPOLOGY SHOWING A LINK WHERE OBFF IS CARRIED BY
MESSAGES ........................................................................................................................... 624
FIGURE 6-20. PASID TLP PREFIX: ....................................................................................... 627
FIGURE 6-21: SAMPLE SYSTEM BLOCK DIAGRAM ....................................................................... 631
FIGURE 6-22: LN PROTOCOL BASIC OPERATION ......................................................................... 632
FIGURE 6-23: EXAMPLE SYSTEM TOPOLOGIES USING PTM ......................................................... 638
FIGURE 6-24: PRECISION TIME MEASUREMENT LINK PROTOCOL ................................................ 639
FIGURE 6-25: PRECISION TIME MEASUREMENT EXAMPLE ........................................................... 641
FIGURE 6-26: PTM REQUESTER OPERATION ............................................................................... 644
FIGURE 6-27: PTM TIMESTAMP CAPTURE EXAMPLE ................................................................... 647
FIGURE 7-1: PCI EXPRESS ROOT COMPLEX DEVICE MAPPING ................................................... 652
FIGURE 7-2: PCI EXPRESS SWITCH DEVICE MAPPING ................................................................ 652
FIGURE 7-3: PCI EXPRESS CONFIGURATION SPACE LAYOUT ...................................................... 653
FIGURE 7-4: COMMON CONFIGURATION SPACE HEADER ............................................................ 664
FIGURE 7-5: TYPE 0 CONFIGURATION SPACE HEADER ................................................................ 671
FIGURE 7-6: TYPE 1 CONFIGURATION SPACE HEADER ................................................................ 673
FIGURE 7-7: POWER MANAGEMENT CAPABILITIES REGISTER ..................................................... 677
FIGURE 7-8: POWER MANAGEMENT STATUS/CONTROL REGISTER .............................................. 678
Member Review Draft
剩余1072页未读,继续阅读
2021-04-28 上传
2018-01-24 上传
2023-04-30 上传
2023-04-30 上传
2023-10-03 上传
2023-10-21 上传
2023-12-15 上传
2023-07-27 上传
奔跑的蜗牛super
- 粉丝: 50
- 资源: 2
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 深入浅出:自定义 Grunt 任务的实践指南
- 网络物理突变工具的多点路径规划实现与分析
- multifeed: 实现多作者间的超核心共享与同步技术
- C++商品交易系统实习项目详细要求
- macOS系统Python模块whl包安装教程
- 掌握fullstackJS:构建React框架与快速开发应用
- React-Purify: 实现React组件纯净方法的工具介绍
- deck.js:构建现代HTML演示的JavaScript库
- nunn:现代C++17实现的机器学习库开源项目
- Python安装包 Acquisition-4.12-cp35-cp35m-win_amd64.whl.zip 使用说明
- Amaranthus-tuberculatus基因组分析脚本集
- Ubuntu 12.04下Realtek RTL8821AE驱动的向后移植指南
- 掌握Jest环境下的最新jsdom功能
- CAGI Toolkit:开源Asterisk PBX的AGI应用开发
- MyDropDemo: 体验QGraphicsView的拖放功能
- 远程FPGA平台上的Quartus II17.1 LCD色块闪烁现象解析
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功