ROC-RK3399-PC开发板按键测试与售后维修指南

需积分: 50 8 下载量 2 浏览量 更新于2024-08-06 收藏 5.05MB PDF 举报
"按键测试-元学习论文​​optimization as a model for few-shot learning的简单理解_详细注释" 本文将探讨的是一个关于元学习的论文——"Optimization as a Model for Few-Shot Learning",并通过按键测试在RK3399 Linux系统中的实践来加深理解。元学习是一种机器学习方法,旨在使模型能够快速适应新的任务,即使只有少量的训练数据。在这种情况下,优化过程本身被用作模型,以便在小样本量下有效地学习。 在5.5按键测试部分,我们关注的是如何验证硬件上的按键功能是否正常工作。通过使用Linux命令行工具hexdump和dmesg,可以监控系统对按键操作的响应。hexdump用于显示文件的十六进制和ASCII表示,而dmesg则用于打印内核消息,这在检查硬件事件如按键按下时非常有用。 图5.9.1给出了按键的位置,帮助用户定位并进行测试。当执行特定命令后,操作按键,如果系统正确识别并响应,会在终端上打印出相关信息。这对于调试硬件设备和验证驱动程序安装是必要的步骤。 资源中提到的Roc-rk3399-pc是一款基于ARMCortex-A72+Cortex-A53架构的嵌入式开发平台,由Shenzhen 100ask Technology Co.生产。该平台适用于Linux系统,具有详细的开发手册,旨在为用户提供全面的指导。用户在使用时应注意设备的使用环境和操作安全,例如使用合适的电源适配器,避免在极端环境下操作,防止液体溅到设备上,以及避免在通电状态下插拔模块等。 此外,文档还提供了售后维修信息,包括不同部件的保修期限和维修政策。用户在遇到问题时,可以通过官方渠道联系售后部门,获取相应的支持和服务。 这篇文章结合了元学习的理论概念与实际操作,通过按键测试展示了在RK3399 Linux平台上如何应用元学习的思想,同时也强调了硬件设备的使用和维护注意事项。

train with base lr in the first 100 epochs # and half the lr in the last 100 epochs To train with a base learning rate for the first 100 epochs and half the learning rate for the last 100 epochs, you can use a learning rate scheduler in PyTorch. Here's an example of how you can modify the training loop in your code: import torch import torch.nn as nn import torch.optim as optim from torch.optim.lr_scheduler import MultiStepLR # Define your model, criterion, and optimizer model = YourModel() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01) # Define the number of epochs and the milestone epochs num_epochs = 200 milestones = [100] # Create a learning rate scheduler scheduler = MultiStepLR(optimizer, milestones=milestones, gamma=0.5) # Train the model for epoch in range(num_epochs): # Train with base lr for the first 100 epochs, and half the lr for the last 100 epochs if epoch >= milestones[0]: scheduler.step() for inputs, labels in train_loader: # Forward pass outputs = model(inputs) loss = criterion(outputs, labels) # Backward pass and optimization optimizer.zero_grad() loss.backward() optimizer.step() # Perform validation or testing after each epoch with torch.no_grad(): # Validation or testing code # Print training information print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item()}, LR: {scheduler.get_last_lr()[0]}") # Save the model or perform other operations after training In this code snippet, we create a MultiStepLR scheduler and specify the milestones as [100] and gamma as 0.5. The learning rate is halved at the specified milestone epochs. Inside the training loop, we check if the current epoch is greater than or equal to the milestone epoch, and if so, we call scheduler.step() to update the learning rate. Remember to adjust the num_epochs and other hyperparameters according to your specific requirements. 翻译成中文

2023-07-16 上传

Casola, V., & Castiglione, A. (2020). Secure and Trustworthy Big Data Storage. Springer. Corriveau, D., Gerrish, B., & Wu, Z. (2020). End-to-end Encryption on the Server: The Why and the How. arXiv preprint arXiv:2010.01403. Dowsley, R., Nascimento, A. C. A., & Nita, D. M. (2021). Private database access using homomorphic encryption. Journal of Network and Computer Applications, 181, 103055. Hossain, M. A., Fotouhi, R., & Hasan, R. (2019). Towards a big data storage security framework for the cloud. In Proceedings of the 9th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, USA (pp. 402-408). Rughani, R. (2019). Analysis of Security Issues and Their Solutions in Cloud Storage Environment. International Journal of Computer Trends and Technology (IJCTT), 67(6), 37-42. van Esbroeck, A. (2019). Zero-Knowledge Proofs in the Age of Cryptography: Preventing Fraud Without Compromising Privacy. Chicago-Kent Journal of Intellectual Property, 19, 374. Berman, L. (2021). Watch out for hidden cloud costs. CFO Dive. Retrieved from https://www.cfodive.com/news/watch-out-for-hidden-cloud-costs/603921/ Bradley, T. (2021). Cloud storage costs continue to trend downward. Forbes. Retrieved from https://www.forbes.com/sites/tonybradley/2021/08/27/cloud-storage-costs-continue-to-trend-downward/?sh=6f9d6ade7978 Cisco. (2019). Cost optimization in the multicloud. Cisco. Retrieved from https://www.cisco.com/c/dam/en/us/solutions/collateral/data-center-virtualization/cloud-cost-optimization/cost-optimization_in_multicloud.pdf IBM. (2020). Storage efficiency solutions. IBM. Retrieved from https://www.ibm.com/blogs/systems/storage-efficiency-solutions/ Microsoft Azure. (n.d.). Azure Blob storage tiers. Microsoft Azure. Retrieved from https://azure.microsoft.com/en-us/services/storage/blobs/#pricing Nawrocki, M. (2019). The benefits of a hybrid cloud strategy for businesses. DataCenterNews. Retrieved from https://datacenternews.asia/story/the-benefits-of-a-hybrid-cloud-strategy-for,请把这一段reference list改为标准哈佛格式

2023-05-29 上传