train with base lr in the first 100 epochs # and half the lr in the last 100 epochs To train with a base learning rate for the first 100 epochs and half the learning rate for the last 100 epochs, you can use a learning rate scheduler in PyTorch. Here's an example of how you can modify the training loop in your code: import torch import torch.nn as nn import torch.optim as optim from torch.optim.lr_scheduler import MultiStepLR # Define your model, criterion, and optimizer model = YourModel() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01) # Define the number of epochs and the milestone epochs num_epochs = 200 milestones = [100] # Create a learning rate scheduler scheduler = MultiStepLR(optimizer, milestones=milestones, gamma=0.5) # Train the model for epoch in range(num_epochs): # Train with base lr for the first 100 epochs, and half the lr for the last 100 epochs if epoch >= milestones[0]: scheduler.step() for inputs, labels in train_loader: # Forward pass outputs = model(inputs) loss = criterion(outputs, labels) # Backward pass and optimization optimizer.zero_grad() loss.backward() optimizer.step() # Perform validation or testing after each epoch with torch.no_grad(): # Validation or testing code # Print training information print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item()}, LR: {scheduler.get_last_lr()[0]}") # Save the model or perform other operations after training In this code snippet, we create a MultiStepLR scheduler and specify the milestones as [100] and gamma as 0.5. The learning rate is halved at the specified milestone epochs. Inside the training loop, we check if the current epoch is greater than or equal to the milestone epoch, and if so, we call scheduler.step() to update the learning rate. Remember to adjust the num_epochs and other hyperparameters according to your specific requirements. 翻译成中文
时间: 2024-02-14 08:29:44 浏览: 131
为了在前100个epochs中使用基本学习率训练,并在最后100个epochs中将学习率减半,你可以在PyTorch中使用学习率调度器。这是一个示例,展示了如何修改代码中的训练循环:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim.lr_scheduler import MultiStepLR
# 定义模型、损失函数和优化器
model = YourModel()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)
# 定义总的训练轮数和里程碑轮数
num_epochs = 200
milestones = [100]
# 创建学习率调度器
scheduler = MultiStepLR(optimizer, milestones=milestones, gamma=0.5)
# 训练模型
for epoch in range(num_epochs):
# 在前100个epochs中使用基本学习率,最后100个epochs将学习率减半
if epoch >= milestones[0]:
scheduler.step()
for inputs, labels in train_loader:
# 前向传播
outputs = model(inputs)
loss = criterion(outputs, labels)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 在每个epoch结束后进行验证或测试
with torch.no_grad():
# 验证或测试的代码
# 打印训练信息
print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item()}, LR: {scheduler.get_last_lr()[0]}")
# 保存模型或进行其他操作
```
在这段代码中,我们创建了一个MultiStepLR调度器,并将里程碑轮数设为[100],gamma设为0.5。在指定的里程碑轮数时,学习率会减半。在训练循环内部,我们检查当前的epoch是否大于或等于里程碑轮数,如果是,则调用scheduler.step()来更新学习率。
记得根据实际需求调整num_epochs和其他超参数。
阅读全文