nn.fit(X_train, labels_train, learning_rate=0.2, epochs=10)
时间: 2024-05-20 11:14:13 浏览: 72
这看起来像是使用神经网络(nn)训练数据集(X_train)和标签(labels_train)的代码。学习率(learning_rate)通常用于控制模型参数更新的速度,在每个epoch(训练周期)中使用它来更新模型参数。epochs是指将整个数据集训练多少次。这段代码将数据集训练了10个epochs,使用学习率为0.2。
相关问题
loss_fn = nn.MSELoss() optimizer = paddle.optimizer.SGD(learning_rate=learning_rate, parameters=model.parameters()) model.prepare(loss_fn, optimizer) history = model.fit(train_loader, epochs=num_epochs, verbose=1) TypeError: 'loss' must be sub classes of `paddle.nn.Layer` or any callable function.
这个错误提示表明你使用了一个不合适的参数作为 `model.prepare()` 方法中的损失函数 `loss_fn`。
`nn.MSELoss()` 返回的是一个类(`nn.MSELoss`)的实例,而不是一个可调用函数。因此,你需要使用 `nn.MSELoss()` 的实例方法 `forward()` 来计算损失值,然后把它作为参数传递给 `model.prepare()` 方法。
你可以像下面这样修改代码:
```python
loss_fn = nn.MSELoss()
optimizer = paddle.optimizer.SGD(learning_rate=learning_rate, parameters=model.parameters())
def loss_fn_wrapper(logits, labels):
loss = loss_fn(logits, labels)
return paddle.mean(loss)
model.prepare(loss_fn=loss_fn_wrapper, optimizer=optimizer)
history = model.fit(train_loader, epochs=num_epochs, verbose=1)
```
在这里,我们定义了一个新的函数 `loss_fn_wrapper`,它接受模型的输出 `logits` 和标签 `labels` 作为输入,并使用 `nn.MSELoss()` 计算损失值。然后,我们使用 `paddle.mean()` 函数来计算平均损失值,并将其作为包装函数的返回值。最后,我们将包装函数 `loss_fn_wrapper` 作为 `model.prepare()` 方法中的损失函数参数。
net = LeNet5() paddle.summary(net,(-1,1,img_size,img_size)) from paddle.metric import Accuracy save_dir = "model/lenet_2" epoch = 5 lr = 0.01 weight_decay = 5e-4 batch_size = 64 model = paddle.Model(net) optim = paddle.optimizer.Adam(learning_rate=lr,parameter=model.parameters(),weight_decay=weight_decay) model.prepare(optim,paddle.nn.CrossEntropyloss(),paddle.nn.Accuracy()) model.fit(train_dataset,epochs=epoch,batch_size=batch_size,save_dir=save_dir,verbose=1) best_model_path = "model/lenet_2/final.pdparams" net = LeNet5() model = paddle.Model(net) model.load(best_model_path) model.prepare(optim,paddle.nn.CrossEntropyloss(),Accuracy()) results = model.evaluate(test_dataset,batch_size=batch_size,verbose=1) print(results)在pytorch中如何表示
在 PyTorch 中,上述代码可以表示为:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
class LeNet5(nn.Module):
def __init__(self):
super(LeNet5, self).__init__()
self.conv1 = nn.Conv2d(1, 6, 5)
self.pool1 = nn.MaxPool2d(2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.pool2 = nn.MaxPool2d(2)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool1(torch.relu(self.conv1(x)))
x = self.pool2(torch.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
train_dataset = # 加载训练数据集
test_dataset = # 加载测试数据集
batch_size = 64
epoch = 5
lr = 0.01
weight_decay = 5e-4
save_dir = "model/lenet_2"
best_model_path = "model/lenet_2/final.pt"
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
net = LeNet5().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=lr, weight_decay=weight_decay)
# 训练模型
for epoch in range(epoch):
net.train()
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print(f"Epoch {epoch+1}, loss: {running_loss/len(train_loader):.4f}")
torch.save(net.state_dict(), best_model_path)
# 测试模型
net.load_state_dict(torch.load(best_model_path))
net.eval()
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
accuracy = correct / total
print(f"Accuracy on test set: {accuracy:.4f}")
```
阅读全文