lr=0.03 num_epochs=3 net=linreg loss=squared_loss for epoch in range(num_epo
时间: 2023-11-23 21:03:07 浏览: 110
pytorch之inception_v3的实现案例
chs = 为了清晰起见,请看下面用中文的解释:
此处给定了以下参数:学习率为0.03,训练轮数为3,神经网络为线性回归,并使用均方损失函数。
那么,下面这段代码就是使用给定的参数进行训练的代码:
```python
lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss
for epoch in range(num_epochs):
# 在每个训练轮次(epoch)中对网络进行训练
# 这里可以添加代码来获取训练数据
# 前向传播
output = net(data)
# 计算损失
l = loss(output, label)
# 反向传播
l.backward()
# 更新参数
d2l.sgd([net.w, net.b], lr)
```
这段代码中,`epoch` 代表当前的训练轮次,循环从0到`num_epochs-1`。在每个训练轮次中,代码会执行以下操作:
1. 前向传播:将输入数据 `data` 通过神经网络 `net` 进行计算,得到预测结果 `output`。
2. 计算损失:使用预测结果 `output` 和真实标签 `label`,通过损失函数 `loss` 计算损失值 `l`。
3. 反向传播:根据损失值 `l`,使用自动求导机制计算网络参数的梯度。
4. 更新参数:使用随机梯度下降(SGD)优化算法,根据学习率 `lr` 更新网络的参数。这里通过调用 `d2l.sgd()` 函数来实现参数的更新,其中`[net.w, net.b]` 表示需要更新的参数。
循环会重复以上步骤,直到所有训练轮次完成。
需要注意的是,代码中的变量 `data` 和 `label` 表示训练数据和对应的标签,这段代码中并未给出获取训练数据的实现。
阅读全文