实践Scikit-Learn与TensorFlow:打造智能系统的实战指南

需积分: 11 3 下载量 82 浏览量 更新于2024-07-19 收藏 7.2MB PDF 举报
《Hands-On Machine Learning with Scikit-Learn and TensorFlow》是由Aurélien Géron所著的一本实践导向的书籍,专为那些想要深入理解和应用机器学习技术的人设计。这本书旨在介绍如何使用两个流行的Python库——Scikit-Learn和TensorFlow来构建智能系统。Scikit-Learn是一个强大的机器学习库,而TensorFlow则是由Google开发的深度学习框架,两者结合为读者提供了一个全面的学习平台。 书中涵盖了众多概念、工具和实用技巧,从基础的机器学习算法(如线性回归、决策树、随机森林和支持向量机)到高级主题,如神经网络、卷积神经网络(CNN)和循环神经网络(RNN)。读者将学会如何处理数据预处理、特征工程、模型训练和评估,以及如何利用这些技术解决实际问题。 作者Aurélien Géron以其清晰的讲解和实用示例,引导读者逐步掌握这两个库的使用方法,包括如何在Scikit-Learn中实现简单模型,再到TensorFlow中构建复杂的深度学习模型。书中的每个章节都包含详细的代码示例,使读者能够在实践中快速上手,并理解背后的原理。 此外,本书还探讨了深度学习的基本概念,如梯度下降、反向传播和自动编码器,以及如何通过TensorFlow实现这些概念。对于初学者,书中的入门章节提供了良好的基础知识,而对于已经有一定经验的开发者,它则是一个提升技能、扩展知识库的重要参考资源。 值得注意的是,版权信息表明这本书享有2017年的版权,且允许出于教育、商业或销售推广目的购买。在线版本也在O'Reilly官网提供,对于机构和个人用户,可通过联系O'Reilly的销售部门获取更多信息。 《Hands-On Machine Learning with Scikit-Learn and TensorFlow》是一本实用的指南,适合机器学习爱好者、数据科学家和工程师,无论你是希望入门学习还是寻求进阶技能提升,都能从中受益匪浅。通过阅读这本书,读者将能掌握核心机器学习技术和深度学习工具,为进一步发展人工智能项目打下坚实的基础。
2017-03-27 上传
Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems by Aurélien Géron English | 2017 | ISBN: 1491962291 | 566 Pages | EPUB | 8.41 MB Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks—scikit-learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use scikit-learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets Apply practical code examples without acquiring excessive machine learning theory or algorithm details