机器视觉应用:相机与镜头选型实例分析
需积分: 50 16 浏览量
更新于2024-08-24
收藏 827KB PPT 举报
"本文主要介绍了机器视觉相机和镜头在实际应用中的选型方法,通过一个齿轮项目的案例展示了如何根据项目需求来确定相机和镜头的参数。齿轮项目要求检测滚轴安装质量和直径公差,相机选择了640x480分辨率、曝光时间至少1/2秒的工业相机,而镜头则选用12mm定焦镜头,满足了200mm的工作距离和48mm的视场需求。文章还概述了机器视觉相机的基础知识,包括相机的分类、基本参数和镜头的选择依据。"
在机器视觉系统中,相机和镜头的选择至关重要,它们直接影响到系统的检测精度和性能。首先,我们来看相机的选择。在这个齿轮项目中,客户需要检测的精度是200微米。计算公式精度 = FOV / Resolution,考虑到实际测量的齿轮大小48mm,加上边缘宽度,FOV设定为60mm。由此计算得到的Resolution为60/0.2,即300,因此选择了分辨率为640x480的相机,同时为了保证在高速检测下能捕捉清晰图像,曝光时间至少设定为1/2秒。
接下来是镜头的选取。本项目中没有特殊的检测环境要求,工作距离(WD)设定为200mm。根据相机的CCD尺寸1/4英寸,转换为对角线长度4mm,再根据4:3的比例,可以计算出水平的直角边约为3.2mm。然后,利用Focus level/WD=CCD Size / FOV的关系,得出f=CCD Size*WD/FOV=3.2*200/60约等于10.6mm。因此,这里选择了12mm的定焦镜头,能够满足工作距离和视场的需求。
工业相机的分类多样,可以根据芯片类型、传感器结构、扫描方式、分辨率、输出信号和色彩来区分。基本参数如分辨率、像素深度、像元尺寸、帧速率、曝光方式和快门速度等,都是评价相机性能的重要指标。像素深度表示每个像素存储颜色信息的能力,像元尺寸影响相机的成像质量,帧速率决定了相机处理图像的速度,曝光方式和快门速度则关乎在不同环境下的成像效果。
传感器尺寸也是一个关键因素,较大的传感器通常能提供更高的像素。例如,1/2”、1/3”、2/3”等表示的不同尺寸,意味着更大的传感器可以捕捉到更丰富的光线信息,从而提高图像质量。
机器视觉相机和镜头的选型需综合考虑项目需求、相机性能参数以及实际应用环境。在这个齿轮项目中,通过精确计算和匹配,成功地选用了合适的相机和镜头,确保了检测的准确性和效率。在设计和实施机器视觉系统时,理解这些基本概念和计算方法对于做出正确的设备选择至关重要。
2020-08-10 上传
2020-01-03 上传
点击了解资源详情
点击了解资源详情
点击了解资源详情
2024-11-02 上传
2021-08-16 上传
2023-10-02 上传
花香九月
- 粉丝: 28
- 资源: 2万+
最新资源
- Twinkle Tray:轻松一招,多屏亮度管理
- WHOIS-Python-Bot:自动抓取WHOIS信息的Python脚本
- Mario Kart 64课程代码生成器实现与React应用实践
- Node.js SecureSecret模块:文件加密保护技术指南
- React自定义渲染器react-blessed:实验性的祝福体验
- 后端Node.js与前端React简易集成方法
- 基于Java的SSM物流环境监测系统开发与应用
- RPKI存储库RIPE Atlas测量套件的Python实现
- 即时域名检查器工具:扩展程序助力域名搜索
- 互惠生关系网:HTML视角下的交互作用分析
- 零基础Python开发入门教程详解(第一季)
- IsoStack: React.js 同构应用程序堆栈入门
- 深入解析babel:通天塔的工作原理与实践指南
- 机器学习特征选择技巧实操指南
- Chataigne:艺术家与技术的融合,模块化交互神器
- GD32中BL0939单片机的串口读取与故障检测方法