非牛顿流体流变问题的高性能有限元收敛性分析
需积分: 9 132 浏览量
更新于2024-08-08
收藏 314KB PDF 举报
"流变计算的高性能有限元收敛性分析 (2014年) - 非Newton流体,半离散有限元,耦合方程,收敛性,Euler格式,高性能计算"
该论文主要探讨了非Newton流体流变问题的数值模拟及其在高性能计算中的收敛性分析。非Newton流体是指那些不遵循经典牛顿粘性定律的流体,其剪切应力与剪切速率之间的关系是非线性的,这在许多实际应用中,如聚合物加工、生物流体等领域至关重要。
文中研究的核心是混合型双曲抛物一阶偏微分方程(PDEs)的收敛性,这些方程用于描述非Newton流体的行为。作者采用了一种耦合的偏微分方程组,包括Cauchy流体方程和P-T/T应力方程,以模拟自由表面流动或者由过度拉伸元素产生的流动区域。为了求解这类复杂的动态问题,他们选择了半离散有限元方法,这是一种将连续问题离散化为代数问题的数值技术。
在空间离散方面,文章使用了有限元法,特别是三线性泛函来处理PDE组的非线性部分。而在时间域上,他们采用了Euler格式,这是一种常微分方程的时间推进方法,其精度可以达到O(h^2 + Δt),其中h代表空间离散化参数,Δt代表时间步长。
论文通过高性能计算平台进行了预估计和后估计,得到了方程的数值解,并分析了网格变形的影响。预估计和后估计是数值分析中的关键步骤,它们分别用于评估解的质量和误差估计,以确保计算的准确性。
关键词强调了非Newton流体的特性,以及采用的半离散有限元方法在处理耦合方程中的作用,同时突出了收敛性这一核心概念。非Newton流体的研究具有广泛的应用背景,包括化工、石油、生物工程等多个领域,因此,对其流变特性的精确模拟对于科技进步和工业应用具有重要意义。
此外,论文还提及了非线性问题在现代科学技术中的重要性,特别是非线性微分方程组的求解,因为它们能够揭示线性问题无法捕捉的复杂行为,如奇点、分岔和多解等。有限元方法作为解决这类问题的有效工具,是数值计算领域不可或缺的一部分。
2021-06-05 上传
2021-05-18 上传
2021-05-15 上传
2021-05-13 上传
2021-05-07 上传
点击了解资源详情
106 浏览量
weixin_38642349
- 粉丝: 2
- 资源: 895
最新资源
- matlab编写函数,将davenport谱转换成时程函数脉动风-谐波叠加法-matlab
- 推演示
- 四星电子 USB驱动程序.zip
- cpp_SysListView32.rar
- Review-all-countries-of-the-world:该应用程序的主屏幕上显示了世界所有国家/地区的列表。当用户从列表中选择一个国家时,将向他显示与该国家接壤的所有国家
- eslint-plugin-mossop:我的个人eslint配置
- numeric-keyboard:数字键盘的简单集成
- 大学课程作业:留学生学籍系统
- nativescript-demo:演示
- DeOlhoNoENADE
- HMI编程软件-InoTouchEditorV1.51S.zip
- WebEx recorder and player.rar
- ComplexTop.7sqkrl9v5a.gargbc3
- 塔式网络:Rust的快速,无样板的Web框架
- tabview-scrollview-mapview:https:github.comNativeScriptNativeScriptissues3960
- Instabrand:Boxis.io-用于根据您的Instagram个人资料创建网站的服务