N-Layered .NET 4.0架构指南:面向领域的设计与实践

5星 · 超过95%的资源 需积分: 9 30 下载量 13 浏览量 更新于2024-07-31 收藏 10.47MB PDF 举报
《N-Layered Domain-Oriented Architecture Guide with .NET 4.0》是一本由业内知名专家编撰的技术指南,专注于介绍如何在.NET 4.0平台上采用N层(N-Layered)面向领域的(Domain-Oriented)架构设计方法。该书作者包括但不限于CesardelaTorre-Microsoft、Unai Zorrilla-PlainConcepts、Miguel A. Ramos-Microsoft等微软内部及外部的资深软件工程师和技术贡献者,如Diego Vega、Jonathan Aneja等人,以及一些 MVP(Most Valuable Professional)如Hadi Hariri(来自JetBrains)、Roberto Gonzalez等。 N层架构是一种常见的软件设计模式,它将应用程序划分为若干个独立且职责明确的层次,从底层的数据访问层(Data Access Layer),通过业务逻辑层(Business Logic Layer)处理业务规则,到表示层(Presentation Layer)与用户交互,再到可能存在的服务层(Service Layer)进行解耦。这种架构有助于提高代码的可维护性、可扩展性和复用性,尤其是在.NET 4.0环境下,它充分利用了.NET框架的优势,如.NET Framework的类型系统和面向对象特性。 本书涵盖了以下核心知识点: 1. **基础概念**:对N层架构的原理和理论进行深入解析,让读者理解其背后的哲学和原则,如何将业务需求转化为层次分明的结构。 2. **.NET 4.0技术栈**:详细介绍如何在.NET 4.0中实现各层之间的通信,包括AOP(Aspect Oriented Programming)、ORM(Object-Relational Mapping)工具和WCF(Windows Communication Foundation)等技术的应用。 3. **领域驱动设计(DDD)实践**:探讨如何在.NET环境中应用DDD思想,通过领域模型、聚合根、值对象等概念来组织代码,提升代码质量。 4. **单元测试与架构设计**:如何编写有效的测试用例以验证各层功能,同时保证架构的健壮性和稳定性。 5. **案例研究**:书中提供了实际项目的案例分析,展示如何在不同场景下应用N-Layered Domain-Oriented架构,并从中学习最佳实践。 6. **团队协作与维护**:如何确保团队成员对架构有共同的理解,以及如何处理随着时间和需求变化而进行的架构调整。 7. **持续集成和部署**:讨论如何将N-Layered架构融入CI/CD流程,提高开发效率和产品质量。 《N-Layered Domain-Oriented Architecture Guide with .NET 4.0》是一本实用的参考书籍,不仅适合.NET开发者进一步提升他们的架构设计能力,也适合架构师和项目经理了解如何在.NET 4.0时代构建高效、可维护的软件系统。

用中文翻译:A coupled three-dimensional model is developed to study the internal parameter distributions of the MBPP fuel cell stack, considering fluid dynamics, electro-chemical reactions, multi-species mass transfer, twophase flow of water and thermal dynamics. The model geometry domains include anode MBPP, anode gas wavy flow field (5 parallel flow channels), anode GDL, anode catalyst layer (CL), membrane, cathode CL, cathode GDL, cathode gas wavy flow field (5 parallel flow channels), cathode MBPP and the two-layered coolant wavy flow fields at anode/cathode sides. According to the stack design, the design parameters of wavy flow fields for anode and cathode sides are the same but the phase deviation between their wave cycles presents 180◦. The two wavy flow fields of coolant, at the respective back sides of the anode and cathode plates, form the intercrossed two-layered coolant flow fields inside the MBPP, due to the phase difference of 180◦ between the wave cycles (Fig. 3). The mismatched flow field patterns between the neighbored fluid flows lead to complicated geometry and mesh building. The presented model geometry is divided into several layers (xz plane) according to the different domain materials so that the thin metallic plate and fluid domains with complicated 3D morphologies could be finely meshed layer by layer. As the real geometry of the experimental stack is too large for calculation, the modeled flow field consists of 5 parallel wavy channels, each of which includes 2 wave periods and corresponding inlet/outlet portions as well. To study the detailed thermal behavior of the presented design, the two-layered coolant fluid flow at the back side of the anode plate is considered and so is for the cathode plate. The counter flow operation is conducted where the air flows at the same direction with coolant but the opposite with hydrogen, shown in Fig. 3 (b).

2023-02-10 上传