.NET 4.0下的N-Layered Domain-Oriented架构指南

需积分: 9 4 下载量 51 浏览量 更新于2024-07-22 1 收藏 10.47MB PDF 举报
"N-Layered Domain-Oriented Architecture Guide with .NET 4.0" 本文档是关于微软的N-Layered(多层)架构的详细指南,特别针对使用.NET Framework 4.0进行开发的情况。由多个微软的专家和技术贡献者共同编著,包括但不限于Cesar de la Torre、Unai Zorrilla、Miguel A. Ramos等人。文档旨在提供一种领域驱动的多层架构设计方法,以增强软件系统的可维护性、可扩展性和可重用性。 N-Layered架构是一种经典的软件设计模式,它将应用程序分解为多个相互独立的层次,每个层次负责不同的功能。这种架构通常包括以下几个主要层次: 1. **用户界面层(UI Layer)**:这是用户与系统交互的部分,通常包括Web页面、桌面应用或移动应用。它的职责是收集用户输入并显示反馈结果。 2. **业务逻辑层(Business Logic Layer)**:也称为领域层,这一层包含了应用的核心业务规则和实体。它是整个系统的中心,确保业务规则得到正确执行。 3. **数据访问层(Data Access Layer)**:负责与数据库或其他持久化存储进行交互,执行CRUD(创建、读取、更新、删除)操作。这一层可以使用ORM(对象关系映射)工具如Entity Framework来简化数据访问。 4. **服务层(Service Layer)**:作为不同层之间通信的接口,服务层可以提供业务逻辑的封装,使得其他层次或者外部系统能够调用这些服务。 5. **数据模型层(Data Model Layer)**:定义了应用程序的数据结构,包括实体类和数据传输对象(DTOs),用于在层间传递数据。 6. **接口适配器层(Interface Adapter Layer)**:这一层提供了与UI层交互的接口,如控制器、API等,将业务逻辑层与具体的展示技术解耦。 通过这种方式,N-Layered架构鼓励高内聚低耦合的设计原则,每个层都尽可能地专注于自己的职责,从而提高代码的可测试性和可维护性。在.NET 4.0环境下,利用其强大的框架支持,如WCF(Windows Communication Foundation)进行服务交互,ASP.NET MVC进行Web开发,以及改进的ADO.NET Entity Framework进行数据访问,可以更高效地实现这种架构。 此外,文档还可能涵盖了如何使用设计模式(如Repository模式、Factory模式等)、事务管理、安全性考虑、性能优化以及部署策略等多个方面。这是一份深入探讨多层架构与.NET 4.0结合使用的实用指南,对于任何希望构建稳健且可扩展的企业级应用的开发者来说,都是宝贵的参考资料。

用中文翻译:A coupled three-dimensional model is developed to study the internal parameter distributions of the MBPP fuel cell stack, considering fluid dynamics, electro-chemical reactions, multi-species mass transfer, twophase flow of water and thermal dynamics. The model geometry domains include anode MBPP, anode gas wavy flow field (5 parallel flow channels), anode GDL, anode catalyst layer (CL), membrane, cathode CL, cathode GDL, cathode gas wavy flow field (5 parallel flow channels), cathode MBPP and the two-layered coolant wavy flow fields at anode/cathode sides. According to the stack design, the design parameters of wavy flow fields for anode and cathode sides are the same but the phase deviation between their wave cycles presents 180◦. The two wavy flow fields of coolant, at the respective back sides of the anode and cathode plates, form the intercrossed two-layered coolant flow fields inside the MBPP, due to the phase difference of 180◦ between the wave cycles (Fig. 3). The mismatched flow field patterns between the neighbored fluid flows lead to complicated geometry and mesh building. The presented model geometry is divided into several layers (xz plane) according to the different domain materials so that the thin metallic plate and fluid domains with complicated 3D morphologies could be finely meshed layer by layer. As the real geometry of the experimental stack is too large for calculation, the modeled flow field consists of 5 parallel wavy channels, each of which includes 2 wave periods and corresponding inlet/outlet portions as well. To study the detailed thermal behavior of the presented design, the two-layered coolant fluid flow at the back side of the anode plate is considered and so is for the cathode plate. The counter flow operation is conducted where the air flows at the same direction with coolant but the opposite with hydrogen, shown in Fig. 3 (b).

2023-02-10 上传