
11.4 The Medial Axis Representation ........................ 417
11.4.1 Computation of the Medial Axis Transform
........ 417
11.4.2 Shape Representation by Medial Axes............. 419
11.5 Active Shape and Active Appearance Models
............. 420
11.5.1 Creating an ASM
............................. 421
11.5.2 Using ASMs for Segmentation
.................. 424
11.5.3 The Active Appearance Model
.................. 426
11.5.4 Deficiencies of Statistical Shape Model s
........... 427
11.5.5 Changing the Param etric Model
.................. 429
11.5.6 Using a Part-Based Model
...................... 429
11.5.7 Using a Non-parametric Model
.................. 430
11.6 Physically-Based Shape Models
........................ 432
11.6.1 Mass-Spring Models
.......................... 434
11.6.2 Finite Element Models
......................... 439
11.7 Shape, Appearance and Pose Priors for Segmentation
....... 453
11.7.1 Atlas-Based Segmentation
...................... 453
11.7.2 Combining Shape Information with Leve l Set
Segmentation
................................ 455
11.7.3 Solutions Based on Graph Cuts
.................. 460
11.7.4 Graph Cuts on Pre-segmented Images
............. 461
11.8 Using a Graphical Model for Detecting Object Parts
........ 463
11.9 Concluding Remarks
................................. 465
11.10 Exercises
.......................................... 466
References
............................................... 468
12 Classification and Clustering
............................... 473
12.1 Features and Feature Space
............................ 474
12.1.1 Linear Decorrelation of Features
................. 475
12.1.2 Linear Discriminant Analysis
.................... 477
12.1.3 Independent Component Analysis
................ 478
12.2 Bayesian Classifier
.................................. 480
12.3 Classification Based on Distance to Training Samples
....... 482
12.4 Decision Boundaries
................................. 485
12.4.1 Adaptive Decision Boundaries
................... 486
12.4.2 The Multilayer Perceptron
...................... 488
12.4.3 Support Vector Machines
...................... 495
12.5 Convolutional Neural Networks and Deep Learning
......... 498
12.5.1 Structure of a CNN
........................... 499
12.5.2 What Does a CNN Learn
...................... 502
12.5.3 Applications in Medical Imag e Analysis
........... 504
12.6 Classification by Association
.......................... 506
12.7 Clustering Techniques
................................ 508
12.7.1 Agglomerative Clustering
...................... 508
12.7.2 Fuzzy c-Means Clustering
...................... 510
xviii Contents