Numba加速:一行代码提升Python运行速度100倍
141 浏览量
更新于2024-08-28
1
收藏 81KB PDF 举报
标题:“一行代码让 Python 的运行速度提高100倍”揭示了 Python 性能提升的关键在于选用高效的优化工具。通常,Python因其解释型语言特性而被误认为运行速度较慢,尤其是与编译型语言如C++相比。然而,通过引入第三方库 Numba,这一观念可以得到改变。
描述中的关键知识点:
1. **Python性能瓶颈:**Cpython(Python的默认解释器)在执行效率上相对较低,这是人们普遍认为Python运行速度慢的主要原因。然而,Python本身其实具有很高的灵活性和可读性。
2. **Numba的介绍:**Numba是一个用于加速Python代码的库,特别针对数值计算任务进行了优化。它通过即时(Just-In-Time,JIT)编译Python函数为机器码,显著提升性能。
3. **性能提升实例:**通过在原始Python函数上添加 `@jit` 装饰器并导入 `numba`,例如 `@jit('f8(f8[:])')`,一个简单的求和函数 `sum1d` 可以实现100多倍的运行速度提升。在累加1亿个数字的示例中,原本需要6.78秒,通过Numba优化后降到了0.0468秒。
4. **安装与支持:**Numba依赖于LLVM编译器,对于Linux用户,需要手动安装LLVM;Windows用户则可以通过预编译的扩展库来简化安装过程。
5. **Numba的优势:**Numba专注于加速处理NumPy数组的函数,这是因为数组操作是数值计算中的常见场景,Numba通过编译优化这些操作,使其接近于C或Fortran的速度,从而大幅提升整体性能。
总结来说,通过使用Numba库的JIT功能,Python开发者可以有效地提升其代码在特定任务上的执行效率,特别是那些涉及大量数值计算的场景,从而打破人们对于Python性能慢的认知,实现了性能上的显著提升。
点击了解资源详情
点击了解资源详情
点击了解资源详情
2020-12-17 上传
2021-01-20 上传
2022-04-20 上传
2020-12-21 上传
点击了解资源详情
点击了解资源详情
weixin_38710578
- 粉丝: 4
- 资源: 932
最新资源
- Testing-React-Practice
- ADS1292R_stm32ads1292r_ads1292rSTM32_ads1292r_ADS1292R基于STM32的驱动
- 项目
- musicExtractBackend:音乐提取服务的后端
- jsblocks.I18n:jsblocks 框架的小型 I18n 扩展
- Postman-Plot
- Library-Management-System:具有PHP和MySQL的图书馆管理系统
- Python库 | python-ffmpeg-video-streaming-0.0.11.tar.gz
- 预算跟踪器
- Brightnest:家庭自动化系统
- 毕业设计&课设--仿京东商城毕业设计.zip
- BathtubFunctionFit:用于估计第四个多项式函数的参数的Python脚本。 此功能通常用于在等温线种群建模中内插有关死亡率对温度的依赖性的数据
- react-fullstack-boilerplate:沸腾板
- Excel模板考试日程安排表.zip
- rbf_pidtest_matlab
- SimplyCoreAudioDemo::speaker_high_volume:SimplyCoreAudio演示项目