设计简单CPU:寄存器与指令系统解析

需积分: 49 9 下载量 142 浏览量 更新于2024-07-12 收藏 1.17MB PPT 举报
"设计简单CPU" 在计算机系统中,CPU(中央处理器)是核心组件,负责执行指令和控制计算过程。本篇内容主要探讨了设计简单CPU的一些关键要素,包括寄存器、指令集、数据通路和控制逻辑。 4. 寄存器是CPU中的重要组成部分,它们扮演着不同的角色: - 地址寄存器AR(Address Register):16位宽,通过引脚A[15..0]向存储器提供地址,用于定位内存中的数据或指令。 - 程序计数器PC(Program Counter):16位宽,存储即将执行的下一条指令的地址或指令所需的操作数地址。 - 数据寄存器DR(Data Register):8位宽,用于从存储器接收和发送指令及数据,通过D[7..0]进行数据交换。 - 指令寄存器IR(Instruction Register):8位宽,存放从存储器取出的操作码,指示CPU应执行的操作。 - 临时寄存器TR(Temporary Register):8位宽,用于在指令执行期间暂时存储数据,程序员无法直接访问。 6. CPU设计通常涉及以下阶段和方法: - 硬布线逻辑控制:直接使用门电路实现控制逻辑,效率高但不易修改。 - 微序列控制器(微程序控制):通过微指令来控制CPU,灵活性高但响应速度相对较慢。 6.1 CPU的设计规范包括: - 确定CPU用途,确保其性能与任务相匹配。 - 设计指令集结构,定义指令集的功能和格式。 - 设计状态图,列出每个状态的微操作及状态转移条件。 - 实现数据通路和控制逻辑,构建有限状态机以完成CPU功能。 6.2 非常简单CPU的设计示例: - 存储空间:64字节,地址6位宽(A[5..0])。 - 寄存器:8位累加器AC可供程序员访问。 - 指令集:4条指令(ADD, AND, JMP, INC),每条指令都有特定的操作码。 - 寄存器:6位地址寄存器AR,6位程序计数器PC,8位数据寄存器DR,2位指令寄存器IR。 6.2.2 取指令过程: - 将地址送至地址引脚,从存储器读取指令。 - 指令被加载到指令寄存器IR中,然后进行译码和执行。 CPU执行指令的典型流程包括取指令、译码和执行三个周期,每个周期对应CPU的不同状态。设计CPU时,首先需要设计状态图,然后构建数据通路和控制逻辑,以实现这个状态机,从而完成CPU的设计。 简单CPU的缺点可能包括处理能力有限、指令集简单、扩展性差等。例如,8085微处理器的内部结构就展示了更复杂CPU的设计,包括更多的寄存器、更丰富的指令集和更复杂的数据通路。 设计CPU的方法有两种:硬布线逻辑控制和微序列控制器。硬布线逻辑控制直接用硬件电路实现,速度快但不灵活;而微序列控制器则通过微程序来控制,灵活性强但响应时间较长。这两种方法各有优缺点,适用于不同场景和需求。
2018-07-04 上传
`define NOP 5'b00000 `define HALT 5'b00001 `define LOAD 5'b00010 `define STORE 5'b00011 `define LDIH 5'b10000 `define ADD 5'b01000 `define ADDI 5'b01001 `define ADDC 5'b10001 `define SUB 5'b01011 `define SUBI 5'b10011 `define SUBC 5'b10111 `define CMP 5'b01100 // control `define JUMP 5'b11000 `define JMPR 5'b11001 `define BZ 5'b11010 `define BNZ 5'b11011 `define BN 5'b11100 `define BNN 5'b11101 `define BC 5'b11110 `define BNC 5'b11111 // logic / shift `define AND 5'b01101 `define OR 5'b01111 `define XOR 5'b01110 `define SLL 5'b00100 `define SRL 5'b00110 `define SLA 5'b00101 `define SRA 5'b00111 // general register `define gr0 3'b000 `define gr1 3'b001 `define gr2 3'b010 `define gr3 3'b011 `define gr4 3'b100 `define gr5 3'b101 `define gr6 3'b110 `define gr7 3'b111 // FSM `define idle 1'b0 `define exec 1'b1 /******* the whole module CPU is made of Instuction_Mem module, PCPU module and Data_Mem module ********/ module CPU( input wire clk, clock, enable, reset, start, input wire[3:0] select_y, output [7:0] select_segment, output [3:0] select_bit ); wire[15:0] d_datain; wire[15:0] i_datain; wire[7:0] d_addr; wire[7:0] i_addr; wire[15:0] d_dataout; wire d_we; wire[15:0] y; reg [20:0] count = 21'b0; Instruction_Mem instruction(clock,reset,i_addr,i_datain); PCPU pcpu(clock, enable, reset, start, d_datain, i_datain, select_y, i_addr, d_addr, d_dataout, d_we, y); Data_memory data(clock, reset, d_addr, d_dataout, d_we, d_datain); Board_eval eval(clk, y, select_segment, select_bit); endmodule /************************ Instruction memeory module *****************************/ module Instruction_Mem ( input wire clock, reset, input wire[7:0] i_addr, output [15:0] i_datain ); reg[15:0] i_data[255:0]; // 8 bits pc address to get instructions reg[15:0] temp; always@(negedge clock) begin if(!reset) begin i_data[0] <= {`LOAD, `gr1, 1'b0, `gr0, 4'b0000}; i_data[1] <= {`LOAD, `gr2, 1'b0, `gr0, 4'b0001}; i_data[2] <= {`ADD, `gr3, 1'b0, `gr1, 1'b0, `gr2}; i_data[3] <= {`SUB, `gr3, 1'b0, `gr1, 1'b0, `gr2}; i_data[4] <= {`CMP, `gr3, 1'b0, `gr2, 1'b0, `gr1}; i_data[5] <= {`ADDC, `gr3, 1'b0, `gr1, 1'b0, `gr2}; i_data[6] <= {`SUBC, `gr3, 1'b0, `gr1, 1'b0, `gr2}; i_data[7] <= {`SLL, `gr2, 1'b0, `gr3, 1'b0, 3'b001}; i_data[8] <= {`SRL, `gr3, 1'b0, `gr1, 1'b0, 3'b001}; i_data[9] <= {`SLA, `gr4, 1'b0, `gr1, 1'b0, 3'b001}; i_data[10] <= {`SRA, `gr5, 1'b0, `gr1, 1'b0, 3'b001}; i_data[11] <= {`STORE, `gr3, 1'b0, `gr0, 4'b0010}; i_data[12] <= {`HALT, 11'b000_0000_0000}; end else begin temp = i_data[i_addr[7:0]]; end end assign i_datain = temp; endmodule /**************************** PCPU module ***************************/ module PCPU( input wire clock, enable, reset, start, input wire [15:0] d_datain, // output from Data_Mem module input wire [15:0] i_datain, // output from Instruction_Mem module input wire [3:0] select_y, // for the board evaluation output [7:0] i_addr, output [7:0] d_addr, output [15:0] d_dataout, output d_we, output [15:0] y ); reg [15:0] gr [7:0]; reg nf, zf, cf; reg state, next_state; reg dw; reg [7:0] pc; reg[15:0] y_forboard; reg [15:0] id_ir; reg [15:0] wb_ir; reg [15:0] ex_ir; reg [15:0] mem_ir; reg [15:0] smdr = 0; reg [15:0] smdr1 = 0; reg signed [15:0] reg_C1; //有符号 reg signed [15:0] reg_A; reg signed [15:0] reg_B; reg signed [15:0] reg_C; reg signed [15:0] ALUo; //************* CPU control *************// always @(posedge clock) begin if (!reset) state <= `idle; else state <= next_state; end always @(*) begin case (state) `idle : if ((enable == 1'b1) && (start == 1'b1)) next_state <= `exec; else next_state <= `idle; `exec : if ((enable == 1'b0) || (wb_ir[15:11] == `HALT)) next_state <= `idle; else next_state <= `exec; endcase end assign i_addr = pc; // 准备下一条指令的地址 //************* IF *************// always @(posedge clock or negedge reset) begin if (!reset) begin id_ir <= 16'b0; pc <= 8'b0; end else if (state ==`exec) // Stall happens in IF stage, always compare id_ir with i_datain to decide pc and id_ir begin // 当即将被执行的指令要用到之前load写入的值时, stall two stages , id and ex. /* 指令中后第二、三个操作数均为寄存器时,需要判断LOAD的第一个操作数是否与这些指令的后两个寄存器有冲突 为一部分算数运算指令和逻辑运算指令 */ if((i_datain[15:11] == `ADD ||i_datain[15:11] == `ADDC ||i_datain[15:11] == `SUB ||i_datain[15:11] == `SUBC ||i_datain[15:11] == `CMP ||i_datain[15:11] == `AND ||i_datain[15:11] == `OR ||i_datain[15:11] == `XOR) &&( (id_ir[15:11] == `LOAD && (id_ir[10:8] == i_datain[6:4] || id_ir[10:8] == i_datain[2:0])) ||(ex_ir[15:11] == `LOAD && (ex_ir[10:8] == i_datain[6:4] || ex_ir[10:8] == i_datain[2:0])) ) ) // end if begin id_ir <= 16'bx; pc <= pc; // hold pc end /* 指令中第二个操作数为寄存器变量并参与运算时,需要判断LOAD的第一个操作数是否与这些指令的第二个操作数的寄存器有冲突 为移位指令和STORE指令 */ else if (( i_datain[15:11] == `SLL ||i_datain[15:11] == `SRL ||i_datain[15:11] == `SLA ||i_datain[15:11] == `SRA ||i_datain[15:11] == `STORE) &&((id_ir[15:11] == `LOAD &&(id_ir[10:8] == i_datain[6:4])) ||(ex_ir[15:11] == `LOAD &&(ex_ir[10:8] == i_datain[6:4])) ) ) begin id_ir <= 16'bx; pc <= pc; // hold pc end /* 跳转指令系列,id和ex阶段都需要stall,mem阶段跳转 */ else if(id_ir[15:14] == 2'b11 || ex_ir[15:14] == 2'b11) begin id_ir <= 16'bx; pc <= pc; // hold pc end /* mem阶段跳转 */ else begin // BZ & BNZ if(((mem_ir[15:11] == `BZ) && (zf == 1'b1)) || ((mem_ir[15:11] == `BNZ) && (zf == 1'b0))) begin id_ir <= 16'bx; pc <= reg_C[7:0]; end // BN & BNN else if(((mem_ir[15:11] == `BN) && (nf == 1'b1)) || ((mem_ir[15:11] == `BNN) && (nf == 1'b0))) begin id_ir <= 16'bx; pc <= reg_C[7:0]; end // BC & BNC else if(((mem_ir[15:11] == `BC) && (cf == 1'b1)) || ((mem_ir[15:11] == `BNC) && (cf == 1'b0))) begin id_ir <= 16'bx; pc <= reg_C[7:0]; end // JUMP else if((mem_ir[15:11] == `JUMP) || (mem_ir[15:11] == `JMPR)) begin id_ir <= 16'bx; pc <= reg_C[7:0]; end // 非跳转指令且没有检测到冲突 else begin id_ir <= i_datain; pc <= pc + 1; end end // end else end // else reset end // end always //************* ID *************// always @(posedge clock or negedge reset) begin if (!reset) begin ex_ir <= 16'b0; reg_A <= 16'b0; reg_B <= 16'b0; smdr <= 16'b0; end else if (state == `exec) //Data forwarding happens in ID stage, always check id_ir to decide reg_A/B begin ex_ir <= id_ir; // ********************reg_A 赋值******************* // /* 其他无冲突的情况 */ // reg_A <= r1: 要用到 r1 参与运算的指令,即除 "JUMP" 外的控制指令和一些运算指令,将寄存器r1中的值赋给reg_A if ((id_ir[15:14] == 2'b11 && id_ir[15:11] != `JUMP) || (id_ir[15:11] == `LDIH) || (id_ir[15:11] == `ADDI) || (id_ir[15:11] == `SUBI)) reg_A <= gr[id_ir[10:8]]; else if (id_ir[15:11] == `LOAD) reg_A <= gr[id_ir[6:4]]; // case for data forwarding, 当前指令第2个操作数用到之前指令第1个操作数的结果 else if(id_ir[6:4] == ex_ir[10:8]) reg_A <= ALUo; else if(id_ir[6:4] == wb_ir[10:8]) reg_A <= reg_C1; else if(id_ir[6:4] == mem_ir[10:8]) reg_A <= reg_C; //reg_A <= r2: 如果运算中不用到 r1,要用到 r2, 则将 gr[r2] else reg_A <= gr[id_ir[6:4]]; //************************* reg_B赋值************************// if (id_ir[15:11] == `STORE) begin reg_B <= {12'b0000_0000_0000, id_ir[3:0]}; //value3 smdr <= gr[id_ir[10:8]]; // r1 end // case for data forwarding, 当前指令第3个操作数用到之前指令第1个操作数的结果 else if(id_ir[2:0] == ex_ir[10:8]) reg_B <= ALUo; else if(id_ir[2:0] == wb_ir[10:8]) reg_B <= reg_C1; else if(id_ir[2:0] == mem_ir[10:8]) reg_B <= reg_C; /* 其他无冲突的情况 */ else if ((id_ir[15:11] == `ADD) || (id_ir[15:11] == `ADDC) || (id_ir[15:11] == `SUB) || (id_ir[15:11] == `SUBC) || (id_ir[15:11] == `CMP) || (id_ir[15:11] == `AND) || (id_ir[15:11] == `OR) || (id_ir[15:11] == `XOR)) reg_B <= gr[id_ir[2:0]]; end end //************* ALUo *************// always @ (*) begin // {val2, val3} if (ex_ir[15:11] == `JUMP) ALUo <= {8'b0, ex_ir[7:0]}; // 跳转指令 r1 + {val2, val3} else if (ex_ir[15:14] == 2'b11) ALUo <= reg_A + {8'b0, ex_ir[7:0]}; //算数运算,逻辑运算,计算结果到ALUo, 并计算cf标志位 else begin case(ex_ir[15:11]) `LOAD: ALUo <= reg_A + {12'b0000_0000_0000, ex_ir[3:0]}; `STORE: ALUo <= reg_A + reg_B; `LDIH: {cf, ALUo} <= reg_A + { ex_ir[7:0], 8'b0 }; `ADD: {cf, ALUo} <= reg_A + reg_B; `ADDI:{cf, ALUo} <= reg_A + { 8'b0, ex_ir[7:0] }; `ADDC: {cf, ALUo} <= reg_A + reg_B + cf; `SUB: {cf, ALUo} <= {{1'b0, reg_A} - reg_B}; `SUBI: {cf, ALUo} <= {1'b0, reg_A }- { 8'b0, ex_ir[7:0] }; `SUBC:{cf, ALUo} <= {{1'b0, reg_A} - reg_B - cf}; `CMP: {cf, ALUo} <= {{1'b0, reg_A} - reg_B}; `AND: {cf, ALUo} <= {1'b0, reg_A & reg_B}; `OR: {cf, ALUo} <= {1'b0, reg_A | reg_B}; `XOR: {cf, ALUo} <= {1'b0, reg_A ^ reg_B}; `SLL: {cf, ALUo} <= {reg_A[4'b1111 - ex_ir[3:0]], reg_A << ex_ir[3:0]}; `SRL: {cf, ALUo} <= {reg_A[ex_ir[3:0] - 4'b0001], reg_A >> ex_ir[3:0]}; `SLA: {cf, ALUo} <= {reg_A[ex_ir[3:0] - 4'b0001], reg_A <<< ex_ir[3:0]}; `SRA: {cf, ALUo} <= {reg_A[4'b1111 - ex_ir[3:0]], reg_A >>> ex_ir[3:0]}; default: begin end endcase end end //************* EX *************// always @(posedge clock or negedge reset) begin if (!reset) begin mem_ir <= 16'b0; reg_C <= 16'b0; dw <= 0; nf <= 0; zf <= 0; smdr1 <= 16'b0; end else if (state == `exec) begin mem_ir <= ex_ir; reg_C <= ALUo; if (ex_ir[15:11] == `STORE) begin dw <= 1'b1; smdr1 <= smdr; end // 设置标志位zf, nf, 算数和逻辑运算 else if(ex_ir[15:14] != 2'b11 && ex_ir[15:11] != `LOAD) begin zf <= (ALUo == 0)? 1:0; nf <= (ALUo[15] == 1'b1)? 1:0; dw <= 1'b0; end else dw <= 1'b0; end end // PCPU module 的输出 assign d_dataout = smdr1; assign d_we = dw; assign d_addr = reg_C[7:0]; //************* MEM *************// always @(posedge clock or negedge reset) begin if (!reset) begin wb_ir <= 16'b0; reg_C1 <= 16'b0; end else if (state == `exec) begin wb_ir <= mem_ir; if (mem_ir[15:11] == `LOAD) reg_C1 <= d_datain; else if(mem_ir[15:14] != 2'b11) reg_C1 <= reg_C; end end //************* WB *************// always @(posedge clock or negedge reset) begin if (!reset) begin gr[0] <= 16'b0; gr[1] <= 16'b0; gr[2] <= 16'b0; gr[3] <= 16'b0; gr[4] <= 16'b0; gr[5] <= 16'b0; gr[6] <= 16'b0; gr[7] <= 16'b0; end else if (state == `exec) begin // 回写到 r1 if ((wb_ir[15:14] != 2'b11) &&(wb_ir[15:11] != `STORE) &&(wb_ir[15:11] != `CMP) ) gr[wb_ir[10:8]] <= reg_C1; end end // 板极验证 assign y = y_forboard; // 板极验证需要的输出 always @(select_y) begin case(select_y) 4'b0000: y_forboard <= {8'B0,pc}; 4'b0001: y_forboard <= id_ir; 4'b0010: y_forboard <= reg_A; 4'b0011: y_forboard <= reg_B; 4'b0100: y_forboard <= smdr; 4'b0101: y_forboard <= ALUo; 4'b0110: y_forboard <= {15'b0, cf}; 4'b0111: y_forboard <= {15'b0, nf}; 4'b1000: y_forboard <= reg_C; 4'b1001: y_forboard <= reg_C1; 4'b1010: y_forboard <= gr[0]; 4'b1011: y_forboard <= gr[1]; 4'b1100: y_forboard <= gr[2]; 4'b1101: y_forboard<= gr[3]; 4'b1110: y_forboard <= gr[4]; 4'b1111: y_forboard <= gr[5]; endcase end endmodule /**************************** Data memory module ******************************/ module Data_memory ( input wire clock, reset, input wire [7:0] d_addr, input wire [15:0] d_dataout, input wire d_we, output [15:0] d_datain ); reg[15:0] temp; reg[15:0] d_data[255:0]; always@(negedge clock) begin if(!reset) begin d_data[0] <= 16'hFc00; d_data[1] <= 16'h00AB; end else if(d_we) begin d_data[d_addr] <= d_dataout; end else begin temp = d_data[d_addr]; end end assign d_datain = temp; endmodule /**************************** Board evaluation module ******************************/ module Board_eval ( input wire clock, input wire [15:0] y, output reg [7:0] select_segment, output reg [3:0] select_bit ); parameter SEG_NUM0 = 8'b00000011, SEG_NUM1 = 8'b10011111, SEG_NUM2 = 8'b00100101, SEG_NUM3 = 8'b00001101, SEG_NUM4 = 8'b10011001, SEG_NUM5 = 8'b01001001, SEG_NUM6 = 8'b01000001, SEG_NUM7 = 8'b00011111, SEG_NUM8 = 8'b00000001, SEG_NUM9 = 8'b00001001, SEG_A = 8'b00010001, SEG_B = 8'b11000001, SEG_C = 8'b01100011, SEG_D = 8'b10000101, SEG_E = 8'b01100001, SEG_F = 8'b01110001; // 位选 parameter BIT_3 = 4'b0111, BIT_2 = 4'b1011, BIT_1 = 4'b1101, BIT_0 = 4'b1110; reg [20:0] count = 0; always @ (posedge clock) begin count <= count + 1'b1; end always @ (posedge clock) begin case(count[19:18]) 2'b00: begin select_bit <= BIT_3; case(y[15:12]) 4'b0000: select_segment <= SEG_NUM0; 4'b0001: select_segment <= SEG_NUM1; 4'b0010: select_segment <= SEG_NUM2; 4'b0011: select_segment <= SEG_NUM3; 4'b0100: select_segment <= SEG_NUM4; 4'b0101: select_segment <= SEG_NUM5; 4'b0110: select_segment <= SEG_NUM6; 4'b0111: select_segment <= SEG_NUM7; 4'b1000: select_segment <= SEG_NUM8; 4'b1001: select_segment <= SEG_NUM9; 4'b1010: select_segment <= SEG_A; 4'b1011: select_segment <= SEG_B; 4'b1100: select_segment <= SEG_C; 4'b1101: select_segment <= SEG_D; 4'b1110: select_segment <= SEG_E; 4'b1111: select_segment <= SEG_F; endcase end 2'b01: begin select_bit <= BIT_2; case(y[11:8]) 4'b0000: select_segment <= SEG_NUM0; 4'b0001: select_segment <= SEG_NUM1; 4'b0010: select_segment <= SEG_NUM2; 4'b0011: select_segment <= SEG_NUM3; 4'b0100: select_segment <= SEG_NUM4; 4'b0101: select_segment <= SEG_NUM5; 4'b0110: select_segment <= SEG_NUM6; 4'b0111: select_segment <= SEG_NUM7; 4'b1000: select_segment <= SEG_NUM8; 4'b1001: select_segment <= SEG_NUM9; 4'b1010: select_segment <= SEG_A; 4'b1011: select_segment <= SEG_B; 4'b1100: select_segment <= SEG_C; 4'b1101: select_segment <= SEG_D; 4'b1110: select_segment <= SEG_E; 4'b1111: select_segment <= SEG_F; endcase end 2'b10: begin select_bit <= BIT_1; case(y[7:4]) 4'b0000: select_segment <= SEG_NUM0; 4'b0001: select_segment <= SEG_NUM1; 4'b0010: select_segment <= SEG_NUM2; 4'b0011: select_segment <= SEG_NUM3; 4'b0100: select_segment <= SEG_NUM4; 4'b0101: select_segment <= SEG_NUM5; 4'b0110: select_segment <= SEG_NUM6; 4'b0111: select_segment <= SEG_NUM7; 4'b1000: select_segment <= SEG_NUM8; 4'b1001: select_segment <= SEG_NUM9; 4'b1010: select_segment <= SEG_A; 4'b1011: select_segment <= SEG_B; 4'b1100: select_segment <= SEG_C; 4'b1101: select_segment <= SEG_D; 4'b1110: select_segment <= SEG_E; 4'b1111: select_segment <= SEG_F; endcase end 2'b11: begin select_bit <= BIT_0; case(y[3:0]) 4'b0000: select_segment <= SEG_NUM0; 4'b0001: select_segment <= SEG_NUM1; 4'b0010: select_segment <= SEG_NUM2; 4'b0011: select_segment <= SEG_NUM3; 4'b0100: select_segment <= SEG_NUM4; 4'b0101: select_segment <= SEG_NUM5; 4'b0110: select_segment <= SEG_NUM6; 4'b0111: select_segment <= SEG_NUM7; 4'b1000: select_segment <= SEG_NUM8; 4'b1001: select_segment <= SEG_NUM9; 4'b1010: select_segment <= SEG_A; 4'b1011: select_segment <= SEG_B; 4'b1100: select_segment <= SEG_C; 4'b1101: select_segment <= SEG_D; 4'b1110: select_segment <= SEG_E; 4'b1111: select_segment <= SEG_F; endcase end endcase end endmodule 2).test `timescale 1ns / 1ps //////////////////////////////////////////////////////////////////////////////// // Company: // Engineer: // // Create Date: 21:22:32 12/29/2014 // Design Name: CPU // Module Name: C:/Users/liang/Desktop/embed/CPU/CPU/CPUTest.v // Project Name: CPU // Target Device: // Tool versions: // Description: // // Verilog Test Fixture created by ISE for module: CPU // // Dependencies: // // Revision: // Revision 0.01 - File Created // Additional Comments: // //////////////////////////////////////////////////////////////////////////////// module CPU_test; // Inputs reg clock; reg enable; reg reset; reg [3:0] select_y; reg start; // Outputs wire [15:0] y; // Instantiate the Unit Under Test (UUT) CPU cpu ( .clock(clock), .enable(enable), .reset(reset), .start(start), .select_y(select_y) ); initial begin // Initialize Inputs clock = 0; enable = 0; reset = 0; select_y = 0; start = 0; // Wait 100 ns for global reset to finish #100; forever begin #5 clock <= ~clock; end // Add stimulus here end initial begin // Wait 100 ns for global reset to finish #100; $display("pc: id_ir : ex_ir :reg_A: reg_B: reg_C: cf: nf: zf: regC1: gr1: gr2: gr3: gr4: gr5:"); $monitor("%h: %b: %b: %h: %h: %h: %h: %h: %h: %h: %h: %h: %h: %h: %h", cpu.pcpu.pc, cpu.pcpu.id_ir, cpu.pcpu.ex_ir, cpu.pcpu.reg_A, cpu.pcpu.reg_B, cpu.pcpu.reg_C, cpu.pcpu.cf, cpu.pcpu.nf, cpu.pcpu.zf, cpu.pcpu.reg_C1, cpu.pcpu.gr[1], cpu.pcpu.gr[2], cpu.pcpu.gr[3], cpu.pcpu.gr[4], cpu.pcpu.gr[5]); enable <= 1; start <= 0; select_y <= 0; #10 reset <= 0; #10 reset <= 1; #10 enable <= 1; #10 start <=1; #10 start <= 0; end endmodule