统计学习导论:R语言应用

需积分: 18 6 下载量 146 浏览量 更新于2024-07-18 1 收藏 12.74MB PDF 举报
"An Introduction to Statistical Learning with Applications in R" 是一本由 Gareth James、Daniela Witten、Trevor Hastie 和 Robert Tibshirani 合著的统计学习教材,该书由 Springer 出版,并属于 Springer Texts in Statistics 系列。这本书深入浅出地介绍了统计学习的基本概念和方法,并结合 R 语言提供了实际应用的示例。 书中涵盖了统计学习的核心主题,包括监督学习、无监督学习、模型选择和验证、线性模型、泊松回归、决策树、随机森林、支持向量机、神经网络以及集成学习方法如 bagging 和 boosting。作者们通过实例和 R 代码,帮助读者理解并应用这些理论到实际数据分析中。 统计学习是一门涉及预测建模、模式识别和数据挖掘的学科,对于理解和处理大量数据至关重要。R 语言是一个强大的统计计算和图形制作工具,它拥有丰富的统计包,使得在 R 中实现各种统计学习算法变得容易。 本书适合统计学、机器学习、数据科学的学生和从业者阅读,无论他们是在学术界还是工业界工作。书中强调实践应用,旨在培养读者对统计学习理论的深刻理解,并能熟练运用 R 语言解决实际问题。 作者们都是统计学和数据科学领域的知名专家,他们在各自的机构——南加州大学、斯坦福大学和华盛顿大学的统计或生物统计系任职。这确保了书中内容的专业性和权威性。 值得注意的是,本书的出版遵循严格的版权规定,任何复制或使用其中内容的行为都必须得到 Springer 的许可。此外,尽管作者们尽力保证书中的信息准确无误,但仍然可能存在的错误或遗漏,出版商不承担任何法律责任。 "An Introduction to Statistical Learning with Applications in R" 是一份宝贵的资源,它将理论与实践相结合,为读者提供了一个全面了解和掌握统计学习的平台,同时借助 R 语言增强了其实用性和可操作性。对于那些希望提升数据分析技能,特别是希望通过 R 进行统计建模的人来说,这本书是必不可少的参考书籍。
2018-09-21 上传
Statistical learning refers to a set of tools for modeling and understanding complex datasets. It is a recently developed area in statistics, and blends with parallel developments in computer science, and in particular machine learning. The field encompasses many methods such as the lasso and sparse regression, classification and regression trees, and boosting and support vector machines. With the explosion of “Big Data” problems statistical learning has be- come a very hot field in many scientific areas as well as marketing, finance and other business disciplines. People with statistical learning skills are in high demand. One of the first books in this area — The Elements of Statistical Learn- ing (ESL) (Hastie, Tibshirani, and Friedman) — was published in 2001, with a second edition in 2009. ESL has become a popular text not only in statistics but also in related fields. One of the reasons for ESL’s popu- larity is its relatively accessible style. But ESL is intended for individuals with advanced training in the mathematical sciences. An Introduction to Statistical Learning (ISL) arose from the perceived need for a broader and less technical treatment of these topics. In this new book, we cover many of the same topics as ESL, but we concentrate more on the applications of the methods and less on the mathematical details. We have created labs illustrating how to implement each of the statistical learning methods using the popular statistical software package R . These labs provide the reader with valuable hands-on experience. This book is appropriate for advanced undergraduates or master’s stu- dents in Statistics or related quantitative fields, or for individuals in other disciplines who wish to use statistical learning tools to analyze their data. It can be used as a textbook for a course spanning one or two semesters. We would like to thank several readers for valuable comments on prelim- inary drafts of this book: Pallavi Basu, Alexandra Chouldechova, Patrick Danaher, Will Fithian, Luella Fu, Sam Gross, Max Grazier G’Sell, Court- ney Paulson, Xinghao Qiao, Elisa Sheng, Noah Simon, Kean Ming Tan, Xin Lu Tan. It’s tough to make predictions, especially about the future. -Yogi Berra