深度学习YOLOv3实现自然场景多人脸实时检测
需积分: 9 52 浏览量
更新于2024-09-03
收藏 5.37MB PDF 举报
本文主要探讨了"基于深度学习的自然场景下多人脸实时检测"这一主题,针对在实际应用中对人脸检测速度和准确性的需求,研究者采用了先进的深度学习算法——YOLOv3。YOLOv3,全称为You Only Look Once version 3,是一种目标检测框架,它以其高效性和准确性而闻名,特别适合实时场景。
文章的作者李昊璇和吴东东来自山西大学物理电子工程学院,他们提出了一种新的基于YOLOv3的人脸检测模型。这个模型选择Darknet 53作为其骨干网络,这是一种预训练的深度卷积神经网络(CNN),用于提取图像特征。模型通过三个不同尺寸的特征图进行人脸检测,分别预测边界框的中心坐标、置信度以及类别,这有助于提高检测精度并适应不同尺度的人脸。
为了提升模型的训练效率,文中提到对输入数据进行了批量归一化处理,这是一种常用的正则化方法,可以加速损失函数的收敛,减少过拟合的风险,从而实现更快的训练速度。作者利用WideFace的自然场景下多人脸数据集进行实验,这个数据集包含了复杂的真实环境下的多种人脸情况,能有效测试模型在实际应用中的性能。
实验结果显示,基于YOLOv3的人脸检测模型在保证人脸检测实时性的前提下,成功地在自然场景下实现了多人脸的高效检测。这意味着该模型能够在实时监控、视频会议等场景中准确快速地识别人脸,对于安防、社交软件等应用具有重要的实用价值。
关键词包括:多人脸检测、YOLOv3、深度学习、卷积神经网络和批量归一化,这些关键词突出了文章的核心技术路线和研究重点。这篇论文提供了一种有效的方法,将深度学习技术与实时性要求结合,解决自然场景中多人脸检测的问题,为相关领域的研究者和开发者提供了有价值的参考。
2021-07-13 上传
2021-08-18 上传
2022-06-02 上传
2022-06-12 上传
2020-04-12 上传
2021-08-19 上传
2020-04-12 上传
2021-08-18 上传
2021-08-18 上传
anitachiu_2
- 粉丝: 31
- 资源: 801
最新资源
- MATLAB实现小波阈值去噪:Visushrink硬软算法对比
- 易语言实现画板图像缩放功能教程
- 大模型推荐系统: 优化算法与模型压缩技术
- Stancy: 静态文件驱动的简单RESTful API与前端框架集成
- 掌握Java全文搜索:深入Apache Lucene开源系统
- 19计应19田超的Python7-1试题整理
- 易语言实现多线程网络时间同步源码解析
- 人工智能大模型学习与实践指南
- 掌握Markdown:从基础到高级技巧解析
- JS-PizzaStore: JS应用程序模拟披萨递送服务
- CAMV开源XML编辑器:编辑、验证、设计及架构工具集
- 医学免疫学情景化自动生成考题系统
- 易语言实现多语言界面编程教程
- MATLAB实现16种回归算法在数据挖掘中的应用
- ***内容构建指南:深入HTML与LaTeX
- Python实现维基百科“历史上的今天”数据抓取教程