3D自适应稀疏编码压缩技术在光学相干断层成像中的应用

0 下载量 171 浏览量 更新于2024-08-28 收藏 2.25MB PDF 举报
"这篇研究论文探讨了一种名为3D自适应稀疏表示压缩(3D-ASRC)的新型三维图像压缩方法,特别针对光学相干断层扫描(OCT)图像进行了应用。3D-ASRC算法利用相邻OCT图像之间的相关性来提升压缩性能,同时注重保持它们的差异,具有内在的降噪机制,使得压缩后的图像质量往往优于原始图像。实验结果显示,3D-ASRC在临床级视网膜OCT图像上的压缩效果优于其他知名压缩技术。" 3D自适应稀疏表示基于压缩(3D-ASRC)是一种创新的通用图像压缩技术,主要关注于光学相干断层扫描(OCT)图像的压缩优化。OCT是一种非侵入性的高分辨率成像技术,广泛用于眼科和生物医学领域,用于观察活体组织的微结构。3D-ASRC的核心是利用图像的三维结构,通过分析和捕捉相邻图像层之间的相似性和差异性来提高压缩效率。 该算法的独特之处在于它能够自适应地处理图像数据,这意味着它能够在保留关键信息的同时,有效去除冗余和噪声。在压缩过程中,3D-ASRC利用稀疏表示理论,将复杂的图像数据转化为简洁的、具有代表性的系数集合,这些系数可以更高效地存储和传输。由于稀疏表示的降噪特性,经过3D-ASRC压缩的图像不仅在大小上得到减少,而且在视觉质量上也有所提升,有时甚至超过了未压缩的原始图像。 在实际应用中,特别是在临床级别的视网膜OCT图像上,3D-ASRC的优势得到了验证。视网膜OCT图像通常包含大量细节,对图像质量和压缩比率有严格要求,因为这些图像用于诊断和监测眼疾,如青光眼和黄斑变性。与其他传统的压缩方法(如JPEG或JPEG2000)相比,3D-ASRC在保持诊断重要信息的同时,提供了更高的压缩比,这对于存储和传输大量OCT图像至关重要。 此外,3D-ASRC的高效性能还可能扩展到其他医学成像领域,例如磁共振成像(MRI)和超声成像,这些领域同样需要高分辨率图像的快速传输和存储。未来的研究可能会进一步优化3D-ASRC算法,以适应更多类型的数据和更高的压缩需求,同时保持或增强图像质量。 3D-ASRC提供了一种先进的图像压缩解决方案,尤其适合对图像质量有严格要求的医学成像应用,其潜在的影响包括改进诊断流程、降低存储成本和提高远程医疗的可行性。
2023-06-02 上传

Please revise the paper:Accurate determination of bathymetric data in the shallow water zone over time and space is of increasing significance for navigation safety, monitoring of sea-level uplift, coastal areas management, and marine transportation. Satellite-derived bathymetry (SDB) is widely accepted as an effective alternative to conventional acoustics measurements over coastal areas with high spatial and temporal resolution combined with extensive repetitive coverage. Numerous empirical SDB approaches in previous works are unsuitable for precision bathymetry mapping in various scenarios, owing to the assumption of homogeneous bottom over the whole region, as well as the limitations of constructing global mapping relationships between water depth and blue-green reflectance takes no account of various confounding factors of radiance attenuation such as turbidity. To address the assumption failure of uniform bottom conditions and imperfect consideration of influence factors on the performance of the SDB model, this work proposes a bottom-type adaptive-based SDB approach (BA-SDB) to obtain accurate depth estimation over different sediments. The bottom type can be adaptively segmented by clustering based on bottom reflectance. For each sediment category, a PSO-LightGBM algorithm for depth derivation considering multiple influencing factors is driven to adaptively select the optimal influence factors and model parameters simultaneously. Water turbidity features beyond the traditional impact factors are incorporated in these regression models. Compared with log-ratio, multi-band and classical machine learning methods, the new approach produced the most accurate results with RMSE value is 0.85 m, in terms of different sediments and water depths combined with in-situ observations of airborne laser bathymetry and multi-beam echo sounder.

2023-02-18 上传