量子粒子群优化:网络入侵特征选择与SVM结合的检测方法

需积分: 10 0 下载量 197 浏览量 更新于2024-09-08 1 收藏 270KB PDF 举报
该篇论文《基于量子粒子群优化的网络入侵特征选择与检测》由张红梅、高海华和王星宇三位作者共同完成,发表于中国科学技术大学的信息科学与工程学院。论文关注的是网络安全领域的一个关键问题——网络入侵检测。传统的过滤式特征选择方法往往忽视了特征之间的相关性,这对于准确识别潜在威胁具有重要意义。 为了克服这一局限,作者提出了一个结合量子粒子群优化(Quantum Particle Swarm Optimization, QPSO)和支持向量机(Support Vector Machines, SVM)的特征选择策略。QPSO算法是遗传算法的一种量子化变体,它模仿鸟群搜索行为,通过粒子的群体协作寻找最优解。在QPSO中,每个粒子不仅代表一个解决方案,还利用量子叠加态来表示特征子集,这使得单个粒子能够同时模拟多个状态,从而增加了种群多样性,有助于探索更多的特征组合。 量子粒子的另一个特性是概率表示,它使粒子的状态根据一定的概率分布进行编码,这样可以更好地处理特征之间的复杂关系,提高特征选择的精度。每只量子粒子在这个优化过程中充当一个搜索代理,通过不断地调整其位置和速度,尝试找到最能区分正常流量和入侵行为的特征子集。 论文的核心贡献在于设计了一种新的网络入侵检测特征选择包装算法,该算法将QPSO与SVM相结合,旨在找出最具区分度且无冗余的特征子集,以提升入侵检测系统的性能。通过实验验证,这种方法可能在处理大规模数据集时展现出更好的效果,因为它能够有效地处理特征的相关性,并在保持低误报率的同时,提高检测准确性。 总结来说,这篇论文深入探讨了如何利用量子粒子群优化的优势改进网络入侵检测中的特征选择过程,为网络安全研究人员提供了一种新颖且高效的特征筛选策略,有望在实际应用中提高入侵检测系统的效率和精确度。

Traditional network security situation prediction methods depend on the accuracy of historical situation value. Moreover, there are differences in correlation and importance among various network security factors. In order to solve these problems, a combined prediction model based on the temporal convolution attention network (TCAN) and bi-directional gate recurrent unit (BiGRU) network optimized by singular spectrum analysis (SSA) and improved quantum particle swarm optimization algorithm (IQPSO) was proposed. This model was first decomposed and reconstructed into a series of subsequences through the SSA of network security situation data. Next, a prediction model of TCAN-BiGRU was established for each subsequence, respectively. The TCN with relatively simple structure was used in the TCAN to extract features from the data. Besides, the improved channel attention mechanism (CAM) was used to extract important feature information from TCN. Afterwards, the before-after status of the learning situation value of the BiGRU neural network was used to extract more feature information from sequences for prediction. Meanwhile, an improved IQPSO was proposed to optimize the hyper-parameter of the BiGRU neural network. Finally, the prediction results of subsequence were superimposed to obtain the final predicted value. In the experiment, on the one hand, the IQPSO was compared with other optimization algorithms; and the results showed that the IQPSO has better optimization performance; on the other hand, the comparison with traditional prediction methods was performed through the simulation experiment and the established prediction model; and the results showed that the combined prediction model established has higher prediction accuracy.

2023-02-19 上传