2016 年 11 月 Journal on Communications November 2016
2016222-1
第 37 卷第 11 期 通 信 学 报 Vol.37
No.11
基于主曲线的遥感图像河岸线提取
郭芸
1,2
,王宜怀
1,2
,刘纯平
1,2,3
,龚声蓉
1,4
,季怡
1,2
(1. 苏州大学计算机科学与技术学院,江苏 苏州 215006;2. 江苏省软件新技术与产业化协同创新中心,江苏 南京 210046;
3. 吉林大学符号计算与知识工程教育部重点实验室,吉林 长春 130012;4. 常熟理工学院计算机科学与工程学院,江苏 常熟 215500)
摘 要:针对遥感图像中河岸线提取存在不光滑、容易发生间断等问题,提出一种基于主曲线的河岸线提取方法。
该方法在学习过程中结合多边形线(PL, polygonal line)算法和误差反向传播(BP, back propagation)算法,首先学习河
流中心骨架主曲线表达,然后再根据提出的左右河岸点集分割方法获得图像中河流的左岸点集和右岸点集,分别
学习左右河岸线主曲线的光滑参数表达,最终实现遥感图像中河流中心骨架和河岸线的矢量化描述。主曲线表达
解决了河岸线不光滑问题,而左右河岸线分开学习有效解决了因河道窄而导致河岸线间断的问题。在实际遥感图
像河流提取实验中,与现有几种河岸线提取方法的对比分析结果表明:基于主曲线的河岸线提取方法提取的河岸
线具有更好的光滑性,可以较好地解决在河流较窄处发生间断的问题,所得的河岸线矢量化描述更便于存储和重
建,并可作为河流区域的形状特征用于检测与识别。
关键词:遥感图像;河岸线提取;主曲线;PL 算法;BP 算法
中图分类号:TP391.41 文献标识码:A
Bankline extraction in remote sensing images using principal curves
GUO Yun
1,2
, WANG Yi-huai
1,2
, LIU Chun-ping
1,2,3
, GONG Sheng-rong
1,4
, JI Yi
1,2
(1. School of Computer Science and Technology, Soochow University, Suzhou 215006, China;
2. Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing 210046, China;
3. Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China;
4. School of Computer Science and Engineering, Changshu Institute of Technology, Changshu 215500, China)
Abstract: In bankline extraction from remote sensing images, the results are usually rough and segmented. A new bankline
extraction method based on the principal curves was proposed. In the learning process, the polygonal line (PL) algorithm and
the error back propagation (BP) algorithm were combined. Firstly, the principal curve of the river centerline was learned.
Then, a segmentation method was proposed to divide the riparian points into two sets which belong to the left and right bank
respectively, and the smooth parameter expressions of the principal curves of the two banklines were given. Finally, the vec-
tor description of the river centerline and banklines in remote sensing images were realized. The principal curve descriptions
made the extracted banklines smooth, and the separate learning of the two banklines ensured the integrity of the extracted
banklines for even narrow river channels. Comparison with the existing methods through experiments on real remote sensing
images shows that the proposed method can achieve better smoothness and can be used to solve the problem of discontinuity
in narrower channel of a river. The resulting vector descriptions of banklines are more convenient for storage and reconstruc-
tion and can be used as shape features for the detection and identification of river area in images.
Key words: remote sensing image, bankline extraction, principal curves, PL algorithm, BP algorithm
收稿日期:2016-01-18;修回日期:2016-07-10
基金项目:国家自然科学基金资助项目(No.61170124, No.61272258, No.61301299, No.61272005, No.61572085);江苏省自然
科学基金资助项目(No.BK20151254, No.BK20151260);吉林大学符号计算与知识工程教育部重点实验室基金资助项目
(No.93K172016K08);软件新技术与产业化协同创新中心基金资助项目
Foundation Items: The National Natural Science Foundation of China (No.61170124, No.61272258, No.61301299, No.61272005,
o.61572085), The Natural Science Foundation of Jiangsu Province (No.BK20151254, No.BK20151260), The Key Laboratory o
Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University (No.93K172016K08), The Collabora-
tive Innovation Center of Novel Software Technology and Industrialization
doi:10.11959/j.issn.1000-436x.2016222