GEE代码实现: Landsat 影像自动化去云处理
版权申诉
189 浏览量
更新于2024-09-12
收藏 4KB TXT 举报
"这篇文本是关于使用Google Earth Engine (GEE)进行遥感影像去云处理的编程操作。主要涉及了Landsat TOA (Top of Atmosphere)反射率影像的加载、云量统计、简单云分算法以及自定义函数进行云遮罩处理。此外,还提到了地表反射率(SR)产品的去云方法,通常涉及到与QA质量波段的按位运算来筛选和排除云、云影和雪等影响因素。"
在Google Earth Engine (GEE)中,进行影像处理是非常常见的任务,特别是对于遥感影像分析而言。本示例中,首先定义了一个矩形区域(roi)用于后续的影像操作,该区域位于中国华北地区。然后,使用`ee.Geometry.Polygon`创建了一个多边形,并用`Map.centerObject`将其设置为中心位置,缩放级别为7。
接着,加载了Landsat 8的TOA产品(Landsat/LC08/C01/T1_TOA/LC08_123032_20180118),这是一种包含大气层顶反射率的数据。为了可视化,定义了`visParams`,设置了显示的波段(B4、B3、B2)及它们的最小和最大值。
`ee.Algorithms.Landsat.simpleCloudScore`是一个预定义的函数,用于计算影像的云分数,结果是一个新的影像层,其中包含了云量信息。这个云分数范围在1到100之间,数值越高表示云覆盖程度越大。
随后,定义了一个名为`rmCloud`的自定义函数,它接收一个影像作为参数,通过选取"cloud"波段并判断其值是否小于30(表示较低的云覆盖),然后应用`updateMask`方法来更新影像的遮罩,从而实现去云操作。
最后,将原始的`cleanImage`影像应用`rmCloud`函数,进一步在地图上添加处理后的去云影像层,以便于观察和分析。
对于SR产品(地表反射率),其去云方法更加复杂,通常需要结合QA质量波段进行按位运算。这些位运算可以提取特定的像素信息,例如云、云影或雪的信息,并通过位操作将其置为无效,以达到去除这些影响因素的目的。然而,这部分代码没有给出具体的实现,只提到这种处理方式。
总结来说,这个文本提供了使用GEE进行影像去云处理的基本步骤,包括加载影像、计算云分数、定义去云函数以及利用QA波段进行地表反射率产品的去云处理。对于理解和实践遥感影像处理的GEE代码编写具有指导意义。
516 浏览量
1332 浏览量
589 浏览量


此星光明
- 粉丝: 8w+
最新资源
- 掌握Android APK反汇编:软件下载与操作指南
- 提升录音质量:麦克风测试工具使用指南
- 一行Swift代码优化动画内存,提升用户体验
- GitHub Pages托管的Bower官网:用户体验与安装指南
- Shine汉化文件的使用方法与安装指南
- 初学者必备GEF教程:八进制学习资料打包分享
- C++实现基础移位密码加密解密教程
- 深入解读信息系统项目管理师案例分析技巧
- IIS 7最新网络信息服务官方下载与升级指南
- 适用于SONY LT18i的Android 2.3系统补丁
- X11分数显示缩放脚本:在Linux发行版上完美实现
- 掌握PCB板设计:流程技巧与多技术项目源码
- Swift实现仿小红书与淘宝动画效果
- node-rename-cli:跨平台快速批量重命名工具
- Node.js中的Kik机器人开发:Kik Node API指南
- 2018年3月Halcon版本许可证发布