机器学习实战:Scikit-Learn与TensorFlow指南

需积分: 5 0 下载量 15 浏览量 更新于2024-07-19 收藏 45.31MB PDF 举报
"这是一本由Aurélien Géron编写的实践导向的机器学习教程,专注于使用Scikit-Learn和TensorFlow构建智能系统。书中深入浅出地讲解了机器学习的概念、工具和技术。" 在《Hands-On Machine Learning with Scikit-Learn and TensorFlow》这本书中,作者Aurélien Géron提供了对机器学习领域的全面介绍,特别是针对两个最流行的开源库——Scikit-Learn和TensorFlow的实践应用。这本书不仅适合初学者,也对有一定经验的开发者有很高的参考价值。 首先,书中详尽阐述了机器学习的基础概念,包括监督学习、无监督学习和强化学习的原理。读者将了解到如何通过训练数据来构建模型,以及如何利用这些模型进行预测和决策。此外,书中还涵盖了特征工程,这是机器学习中至关重要的一环,它涉及如何从原始数据中提取有用的特征,以提升模型的性能。 其次,Scikit-Learn库的使用是本书的重点之一。Scikit-Learn是一个强大的Python机器学习库,提供了一系列预封装的算法,如线性回归、逻辑回归、支持向量机、决策树、随机森林等。作者展示了如何使用Scikit-Learn进行数据预处理、模型选择、调参优化,并给出了实用的代码示例。 然后,书中的另一大主题是深度学习,主要通过TensorFlow框架来讲解。TensorFlow是一个用于数值计算的强大平台,特别适合构建深度神经网络。读者将学习到如何创建和训练各种类型的神经网络,包括卷积神经网络(CNN)和循环神经网络(RNN),以及如何应用这些网络进行图像识别、自然语言处理等任务。 书中还包含了实战案例,让读者有机会将所学应用于实际问题,如分类、回归、聚类、降维等。此外,还涵盖了评估模型性能的方法,如交叉验证、AUC-ROC曲线、混淆矩阵等,帮助读者理解模型在不同场景下的优劣。 最后,作者讨论了模型的部署和监控,这对于确保机器学习系统在生产环境中的稳定性和有效性至关重要。书中还涵盖了持续集成和持续部署(CI/CD)的概念,帮助读者理解如何将机器学习模型无缝地融入到软件开发流程中。 《Hands-On Machine Learning with Scikit-Learn and TensorFlow》是一本综合性的机器学习教程,它不仅提供了理论知识,还强调了实践操作,使得读者能够从理论到实践,从基础知识到高级技术,全面掌握机器学习的方方面面。
2017-12-23 上传
When most people hear “Machine Learning,” they picture a robot: a dependable butler or a deadly Terminator depending on who you ask. But Machine Learning is not just a futuristic fantasy, it’s already here. In fact, it has been around for decades in some specialized applications, such as Optical Character Recognition (OCR). But the first ML application that really became mainstream, improving the lives of hundreds of millions of people, took over the world back in the 1990s: it was the spam filter. Not exactly a self-aware Skynet, but it does technically qualify as Machine Learning (it has actually learned so well that you seldom need to flag an email as spam anymore). It was followed by hundreds of ML applications that now quietly power hundreds of products and features that you use regularly, from better recommendations to voice search. Where does Machine Learning start and where does it end? What exactly does it mean for a machine to learn something? If I download a copy of Wikipedia, has my computer really “learned” something? Is it suddenly smarter? In this chapter we will start by clarifying what Machine Learning is and why you may want to use it. Then, before we set out to explore the Machine Learning continent, we will take a look at the map and learn about the main regions and the most notable landmarks: supervised versus unsupervised learning, online versus batch learning, instance-based versus model-based learning. Then we will look at the workflow of a typical ML project, discuss the main challenges you may face, and cover how to evaluate and fine-tune a Machine Learning system. This chapter introduces a lot of fundamental concepts (and jargon) that every data scientist should know by heart. It will be a high-level overview (the only chapter without much code), all rather simple, but you should make sure everything is crystal-clear to you before continuing to the rest of the book. So grab a coffee and let’s get started!