List of Figures xxv
4.10 Probability density Pr(P
s
(x; s)) for x corresponding to
P(x) = 0.5 and s = 5 samples. . . . . . . . . . . . . . . . . . . 308
4.11 Probability density Pr(P
s
(x; s)) for three different x cor-
responding to P(x) = 0.05, 0.5, 0.95 and s = 50 samples. . 309
4.12 Probability density Pr(P
s
(x; s)) for s = 25 samples at
three different x. . . . . . . . . . . . . . . . . . . . . . . . . . . 311
4.13 Probability density Pr(P
s
(x; s)) for s = 250 samples. . . . . 311
4.14 Cumulative distribution for the sampling error Pr(D
s
) for
three different sample sizes . . . . . . . . . . . . . . . . . . . 312
4.15 Probability density p(x) to be sampled and the corre-
sponding cumulative distribution P(x). . . . . . . . . . . . . 318
4.16 Six samples of the uniform density on [0, 1], u
i
, and the
corresponding samples of p(x), x
i
. . . . . . . . . . . . . . . 318
4.17 Importance function q(x) and its histogram based on
5000 samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
4.18 Exact density p(x) and its histogram based on 5000 im-
portance samples. . . . . . . . . . . . . . . . . . . . . . . . . . 321
4.19 Exact density p(x) and its histogram based on 5000 im-
portance samples evaluating h(x) in place of p(x) =
h(x)/
R
h(x)dx. . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
4.20 Interval [0, 1] partitioned by original sample weights, w
i
. . 325
4.21 Resampled density of Example 4.33 using 500 samples. . . 329
4.22 Particles’ locations versus time for the simplest particle
filter; 250 particles. . . . . . . . . . . . . . . . . . . . . . . . . . 336
4.23 Particles’ locations versus time for the simplest particle
filter with resampling; 250 particles. . . . . . . . . . . . . . . 338
4.24 Fraction of particles inside the 95% contour of the true
conditional density versus time; with and without resam-
pling; average of 500 runs. . . . . . . . . . . . . . . . . . . . . 339
4.25 Particles’ locations versus time using the optimal impor-
tance function; 250 particles. . . . . . . . . . . . . . . . . . . . 346
4.26 Particles’ locations versus time using the optimal impor-
tance function with resampling; 250 particles. . . . . . . . . 347
4.27 Fraction of particles inside the 95% contour of the true
conditional density versus time; with and without resam-
pling; average of 500 runs. . . . . . . . . . . . . . . . . . . . . 348
4.28 Pure MHE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
4.29 Pure PF with optimal importance function. . . . . . . . . . . 353
4.30 Combination MHE/PF with simple importance function. . . 354
4.31 Combination MHE/PF with optimal importance function. . 355