插头DP模板:哈密顿回路解析
3星 · 超过75%的资源 需积分: 22 34 浏览量
更新于2024-09-14
收藏 36KB DOCX 举报
"简单的插头DP模板,适用于解决哈密顿回路问题,来源于陈丹琦的论文,包括基础部分的代码实现。"
在计算机科学中,动态规划(Dynamic Programming,简称DP)是一种强大的算法设计方法,用于解决多阶段决策过程中的最优化问题。"插头DP"是动态规划的一种特殊形式,常用于处理图论中的某些问题,如寻找哈密顿回路。哈密顿回路是指在一个无向图中,从某一点出发能经过所有其他顶点恰好一次并回到起点的路径。
本模板针对的是POJ2064和HDU1964这两个问题,它们都涉及到插头DP和哈密顿回路。代码定义了一个`Node`结构体,存储了四个整型变量`l`, `r`, `u`, `b`,可能对应于图中某个节点的上下左右四个方向。同时,还定义了一个`HashMap`结构体,用于存储状态和对应的动态规划值。
`HashMap`结构体包含两个数组:`first`用于存储状态哈希值的索引,`next`表示哈希冲突时的状态链,`sz`记录已存储的状态数量,以及两个数据数组`state`和`dp`。`clr()`函数用于清空哈希表,`push()`函数用于插入新的状态和对应的DP值。哈希函数的设计简化了状态查找和插入的过程。
`canGo()`函数检查在给定图中,从(i, j)位置是否可以移动到相邻的位置,这是判断图中路径是否合法的关键。`shift()`函数用于根据给定的索引获取二进制表示中的一个子位,`get()`函数则根据状态的二进制表示获取指定位置的值(表示边的方向)。
`work()`函数是主要的动态规划工作函数,它首先清空哈希表,并插入初始状态。然后遍历所有可能的状态,更新DP值。这个过程中,`ans`变量用于记录当前找到的最优解。
在实际应用中,这个模板可能需要根据具体题目调整,例如`canGo()`和状态的插入逻辑。动态规划问题的关键在于状态的定义、状态转移方程和最优子结构,理解这些概念并灵活运用是解决这类问题的基础。
这个简单的插头DP模板提供了一种处理哈密顿回路问题的框架,对于ACM竞赛或者图论问题的求解具有一定的指导意义。通过理解和修改这个模板,可以解决更多类似的问题。
点击了解资源详情
点击了解资源详情
点击了解资源详情
2023-05-15 上传
2022-08-03 上传
2018-09-05 上传
2018-10-22 上传
2019-03-09 上传
酱油几时有
- 粉丝: 6
- 资源: 4
最新资源
- scoop-bucket
- QuickFork:QuickFork允许您从git repo创建符号链接
- Urban Abodes Craigslist Posting-crx插件
- obdgpslogger-0.15.zip_GPS编程_Unix_Linux_
- afs42d-开源
- 人工智能学习课程练习.zip
- 参考资料-409.混凝土拌合用水质量检查报告.zip
- matlab心线代码-electrostatic-simulation-tools:我有效使用SIMION进行电子和离子光谱仪设计的工具(VM
- sysdigcloud-kubernetes:Kubernetes上的Sysdig Cloud
- 你好,世界
- opencv_test.rar_视频捕捉/采集_Visual_C++_
- familyline-server-test:测试服务器,提供有关Familyline网络协议的想法
- torch_sparse-0.6.10-cp39-cp39-win_amd64whl.zip
- matlab人脸检测框脸代码-ait-research-study-finished:我的研究的最终版本
- 人工智能经典算法Python实现.zip
- benjamingeets