基于Landsat8卫星数据的蝗虫遥感监测技术
需积分: 13 82 浏览量
更新于2024-08-05
收藏 2.02MB PDF 举报
"这篇论文是关于利用landsat卫星数据进行蝗虫遥感监测的研究,主要集中在landsat8卫星数据的应用。研究区域位于内蒙古赤峰市北部三旗,通过landsat8的OLI传感器数据对蝗虫寄主植物进行分类,结合历史蝗区分布图识别出适合蝗虫生存的地区。进一步,论文探讨了如何反演出叶面积指数、地表温度和土壤湿度等关键的蝗虫生境参数,并结合实地调查数据进行分析和建模。最终,建立了基于生境参数的蝗虫虫口密度预测模型,并验证了模型的高精度,决定系数为0.50,均方根误差为3.17。关键词包括:蝗虫监测、landsat8、遥感反演、生境参数。"
这篇论文详细介绍了利用landsat8卫星数据进行生物灾害,特别是蝗虫监测的方法。landsat卫星系列是美国国家航空航天局(NASA)和美国地质调查局(USGS)联合运营的地球观测系统,landsat8是该系列中的一个先进卫星,搭载了 Operational Land Imager (OLI) 和 Thermal Infrared Sensor (TIRS),能提供高分辨率的多光谱图像,非常适合用于环境和生态研究。
在本研究中,landsat8的OLI数据被用来区分和分类蝗虫的寄主植物,这是监测蝗虫活动的基础。通过对卫星数据的处理和分析,可以获取植被信息,帮助识别可能的蝗虫栖息地。接着,论文提到了反演技术,这是一种通过遥感数据重建地面特征参数的方法,如叶面积指数(LAI)、地表温度(LST)和土壤湿度。这些参数对于理解蝗虫的生态环境至关重要,因为它们直接影响到蝗虫的繁殖和分布。
叶面积指数是衡量地表植被覆盖度的重要指标,高LAI可能表明丰富的植被,是蝗虫的食物来源。地表温度则反映了环境的热量状况,可能影响蝗虫的生长和活动。土壤湿度则直接影响蝗虫卵的孵化和幼虫的存活。通过监测这些参数的变化,可以预测蝗虫种群的数量动态。
论文还结合了实地调查数据、地表覆盖数据以及历史蝗灾信息,这有助于增强模型的可靠性和准确性。逐步回归分析是一种统计建模技术,它用来找出最佳的预测变量组合,以建立最有效的模型。在本研究中,这种方法被用来建立蝗虫虫口密度与生境参数之间的关系模型。
最终,模型的验证结果显示出较高的决定系数(R²=0.50),这意味着模型解释了50%的变异,而均方根误差(RMSE=3.17)表明模型的预测误差相对较小。这些数值表明所提出的监测模型具有较高的精度,可作为实际蝗虫灾害预警和管理的有力工具。
这篇论文展示了landsat8卫星数据在生物灾害监测领域的潜力,特别是在早期预警和预防大规模蝗虫灾害方面,为农业生产和生态保护提供了重要的技术支持。
2021-10-08 上传
2023-05-23 上传
2023-04-04 上传
2023-07-25 上传
2023-06-02 上传
2023-05-12 上传
2023-08-20 上传
2023-03-16 上传
2023-06-06 上传
mm8881927
- 粉丝: 3
- 资源: 29
最新资源
- Arduino-RS232:Arduino的RS232接口电路
- Camera影像測試介紹共24页.pdf.zip
- owl2:Scala OWL2 API
- knot_website
- Python库 | robotpy-hal-sim-2016.1.2.tar.gz
- CreateRemoteThread:从32位进程到64位进程
- Accurator:RMA Accurator原型
- Scratch少儿编程项目音效音乐素材-【水】相关音效-海浪声.zip
- SpringNotes.zip_Java编程_Java_
- 迷宫-回溯法改进(优先级算法)
- .net 工具 PDF转图片 源码
- Python库 | robotpy-hal-roborio-2018.0.3.tar.gz
- 51_单片机_skillok8_
- kerala_math:使用喀拉拉邦数学学院的方法模拟计算的Python代码
- 教育科研-学习工具-USB主机从机控制器及音乐教室系统.zip
- Scratch少儿编程项目音效音乐素材-【水】相关音效-水声.zip