高效与鲁棒的自主操作设计:OKVIS视觉-惯性SLAM算法
下载需积分: 6 | PDF格式 | 7.18MB |
更新于2024-07-18
| 24 浏览量 | 举报
本研究论文探讨了"Design and Algorithms for Efficient and Robust Autonomous Operation"的主题,着重于在无人驾驶航空器(Unmanned Solar Airplanes)领域,特别是视觉惯性(Visual-Inertial, VI)同时定位和映射(Simultaneous Localization and Mapping, SLAM)技术的发展。论文的核心焦点是OKVIS算法,这是一个开放的关键帧(Keyframe-based)视觉惯性SLAM估计方法,它将视觉线索与惯性测量单元(IMU)的数据融合,从而实现高精度的系统状态估计和环境感知。
OKVIS通过非线性优化技术,如边际化(Marginalization),有效地整合了地标(landmark)的重新投影误差和惯性数据。边际化策略涉及部分线性化和变量消除,这有助于保持优化问题在可管理范围内,尽管处理的时间间隔可能较长。这种技术对于保证自主操作的效率和鲁棒性至关重要,因为它能够在动态环境中持续提供稳定且精确的位置和姿态信息,这对于无人驾驶航空器的导航和避障至关重要。
作者Stefan Leutenegger,拥有机械工程硕士学位,专注于机器人学,以及来自瑞士联邦理工学院(ETH Zurich)的双学位,他在2014年提交了这篇博士学位论文。他在此期间得到了Roland Siegwart教授、Gerd Hirzinger教授和Kurt Konolige博士等导师的指导和支持。论文不仅展示了作者在自主系统领域的理论研究,也体现了他对实际应用的深入理解,特别是在无人机自主操作方面的创新工作。
该研究的意义在于推动了视觉惯性SLAM技术在无人航空器领域的前沿进展,为实现高效、可靠的自主飞行提供了关键算法和技术支持。它对后续的研究者和实践者来说,提供了宝贵的方法论和实践经验,促进了无人驾驶航空器在复杂环境中的自主探索和控制能力的提升。
相关推荐

874 浏览量


645 浏览量







better1102
- 粉丝: 3
最新资源
- dubbo-admin-2.5.8完美整合JDK1.8无错运行指南
- JSP+SSH框架小区物业管理系统设计与实现
- 桌面宠物与桌面锁功能的VC源码教程
- Java字符过滤机制:BadInputFilter实践解析
- RegAnalyzer:数字逻辑开发中用于bit级寄存器分析工具
- 交互式数据探索:掌握ipython, vim, slimeux提高计算效率
- Matlab中使用CNN处理MNIST数据集
- 新版免疫墙技术突破,系统安全防护升级
- 深入探索Qt库中的对象关系映射技术
- QT递归算法在Windows下绘制二叉树
- 王兆安主编《电力电子技术》第五版课件介绍
- Rails Footnotes:提升Rails应用调试效率的信息展示工具
- 仿通讯录地址选择控件的设计与实现
- LED时间字体设计与电子手表字体对比
- Diglin_Chat: 快速集成Zopim聊天服务到Magento平台
- 如何通过QQ远程控制关闭计算机