机器学习中的广义逆矩阵与最小二乘解
需积分: 24 41 浏览量
更新于2024-08-13
收藏 1024KB PPT 举报
"广义逆矩阵(伪逆)是解决线性方程组的重要工具,尤其在处理奇异阵或长方阵时。R. 彭罗斯在1955年证明了任何m×n阶矩阵A都有唯一的一个n×m阶矩阵A+作为其M-P逆,满足特定条件。在机器学习中,A+常用于找到线性方程组的最小二乘解。此外,交叉验证是评估模型性能的关键方法,包括Holdout验证和K折交叉验证,以确保模型的稳定性和可靠性。"
在机器学习领域,理解和应用广义逆矩阵,即伪逆,对于解决线性方程组至关重要。当矩阵A是非奇异的,我们可以直接使用A的逆矩阵求解Ax=b。然而,如果A是奇异阵或长方阵,传统的逆矩阵不存在,这时就需要引入伪逆A+来寻找线性方程组的最小二乘解。伪逆A+通过满足特定条件定义,如AXA=A、XAX=X、(AX)*=I和(XA)*=I,其中I是单位矩阵,*表示转置且共轭。在实际问题中,特别是在线性回归等算法中,A+用于找到使得误差平方和最小的解x=A+b。
在学习机器学习的过程中,高等数学知识,如线性代数和微积分,是必不可少的基础。例如,了解矩阵运算和优化技术,如梯度下降法和极大似然估计,对于理解和支持向量机(SVM)、决策树、朴素贝叶斯、BP神经网络等监督学习算法至关重要。同时,还要掌握聚类算法(如k-means)和关联规则学习(如Apriori和FP-growth)等非监督学习方法。
交叉验证是评估模型性能和泛化能力的有效手段。它分为多种形式,如Holdout验证,通常会随机选取一部分数据作为验证集,其余作为训练集。而K折交叉验证更为常见,数据被划分为K个子集,每次使用K-1个子集训练模型,剩下的子集用于验证,重复K次后取平均结果。这样可以避免因数据划分导致的模型性能波动,提高评估的稳定性。
总结起来,广义逆矩阵及其在机器学习中的应用,以及交叉验证作为模型验证的技术,是深入理解并成功实践机器学习的关键知识点。无论是监督学习还是非监督学习,这些基础知识都是构建和评估有效模型的基础。在实际操作中,掌握这些概念和方法将有助于优化模型性能,提升预测准确率,并确保模型能够泛化到未见过的新数据。
2020-06-20 上传
302 浏览量
360 浏览量
2022-05-29 上传
2022-11-13 上传
2021-10-03 上传
1168 浏览量
1582 浏览量
904 浏览量
巴黎巨星岬太郎
- 粉丝: 18
- 资源: 2万+
最新资源
- 10-days-of-statistics:使用Python(numpy)从Hackerrank练习10天的统计信息。 关联
- Comparison-of-Student-Grants-using-VBA:使用VBA的数据透视表和数据透视图报告,用于比较两所大学的助学金。 该代码是美国俄亥俄州辛辛那提大学的专有作品。 这只能用于学术目的。 复制此课程的任何部分均需获得作者的许可
- hwnd-adorner:WPF库支持由HwndHost托管的任何hwnd上的层(修饰)
- revues:解析Cairn.info日记元数据
- 算法:《剑指提供》,《程序员代码面试指南》,Leetcode等算法衔接集合。基于.net core的控制台程序,C#实现,包含每道译文的完整描述,多种解法AC代码,以及解主题算法,所有回归正确直接运行以查看输出结果。常用算法汇总中每个算法同样有测试用例,可运行
- js代码-浅拷贝和深拷贝的实现
- 个人网站ADVC58
- nano-2.1.9.tar.gz
- StyleableToast
- Nasty Armoured Tanks of War-开源
- Eatery
- ReCiter:ReCiter:用于学术机构的企业开源作者歧义消除系统
- shirayuki:最没用的Discord机器人
- nano-2.7.2.tar.gz
- java代码-任意给出一个十进制整数,将十进制整数转换为二进制数。
- image2:与其他图像一起包装图像类型