近红外光谱PLS-GRNN模型在马铃薯组分检测中的应用

0 下载量 201 浏览量 更新于2024-09-08 收藏 759KB PDF 举报
"基于偏最小二乘与广义回归神经网络模型的近红外光谱法测定马铃薯中三种成分的研究" 这篇研究论文探讨了利用近红外光谱(Near Infrared Spectroscopy,NIRS)技术结合偏最小二乘(Partial Least Squares,PLS)与广义回归神经网络(Generalized Regression Neural Networks,GRNN)模型,快速测定马铃薯中的纤维、淀粉和蛋白质含量。这种技术在食品科学和农业领域具有广泛应用前景,因为它能够提供一种非破坏性、快速且经济的分析方法。 PLS是一种统计分析工具,用于处理多元线性关系,尤其适用于变量之间存在多重共线性的数据。它通过分解光谱数据来寻找与目标变量(如马铃薯中的成分)最相关的主成分,从而减少数据的复杂性并提取关键信息。 GRNN是一种神经网络模型,以其出色的预测能力和快速的训练过程而著名。它使用简单的平滑因子(在本研究中选择为0.1)来确保模型的准确性和泛化能力。GRNN模型的输入是经过PLS压缩得到的12个主成分的峰值数据,输出则是所关注的三个成分的预测值。 研究人员比较了不同平滑因子(0.1、0.2、0.3、0.4和0.5)对模型预测性能的影响,发现0.1能够提供最佳的逼近和预测结果,误差最低。模型对纤维、淀粉和蛋白质的预测相关系数分别为0.945、0.992和0.938,表明模型具有高度的预测精度。 PLS-GRNN模型在NIRS技术中显示出强大的潜力,能够有效地对马铃薯中的重要营养成分进行定量分析。这种方法不仅可以提高检测效率,而且降低了传统化学分析方法的成本和时间消耗,对于食品安全监控和马铃薯品质控制具有重大意义。未来的研究可能将进一步探索该方法在其他农产品或食品成分分析中的应用。

Please revise the paper:Accurate determination of bathymetric data in the shallow water zone over time and space is of increasing significance for navigation safety, monitoring of sea-level uplift, coastal areas management, and marine transportation. Satellite-derived bathymetry (SDB) is widely accepted as an effective alternative to conventional acoustics measurements over coastal areas with high spatial and temporal resolution combined with extensive repetitive coverage. Numerous empirical SDB approaches in previous works are unsuitable for precision bathymetry mapping in various scenarios, owing to the assumption of homogeneous bottom over the whole region, as well as the limitations of constructing global mapping relationships between water depth and blue-green reflectance takes no account of various confounding factors of radiance attenuation such as turbidity. To address the assumption failure of uniform bottom conditions and imperfect consideration of influence factors on the performance of the SDB model, this work proposes a bottom-type adaptive-based SDB approach (BA-SDB) to obtain accurate depth estimation over different sediments. The bottom type can be adaptively segmented by clustering based on bottom reflectance. For each sediment category, a PSO-LightGBM algorithm for depth derivation considering multiple influencing factors is driven to adaptively select the optimal influence factors and model parameters simultaneously. Water turbidity features beyond the traditional impact factors are incorporated in these regression models. Compared with log-ratio, multi-band and classical machine learning methods, the new approach produced the most accurate results with RMSE value is 0.85 m, in terms of different sediments and water depths combined with in-situ observations of airborne laser bathymetry and multi-beam echo sounder.

2023-02-18 上传