[Advanced] Implementing Partial Least Squares Regression (PLSR) Mathematical Modeling Algorithm in MATLAB

发布时间: 2024-09-13 23:34:04 阅读量: 29 订阅数: 52
# [Advanced篇] Implementing Partial Least Squares Regression (PLSR) in MATLAB for Mathematical Modeling ## 2.1 Mathematical Principles of PLSR Algorithm ### 2.1.1 Derivation of PLSR Algorithm Partial Least Squares Regression (PLSR) is a supervised dimensionality reduction regression algorithm aimed at establishing a linear relationship between predictive variables (X) and response variables (Y). The derivation process of PLSR algorithm is as follows: 1. **Centering and Scaling:** Centering and scaling X and Y to eliminate the effects of variable units and dimensions. 2. **Singular Value Decomposition (SVD):** Conducting SVD on the centered X to obtain its left singular vectors U and right singular vectors V. 3. **Projection:** Projecting X onto the subspace of U to obtain new predictive variables T: T = XU. 4. **Regression:** Performing regression on T and Y to obtain regression coefficients b: b = (T'T)^-1T'Y. 5. **Prediction:** Using regression coefficients b and new predictive variables T to predict response variables Y: Y' = Tb. ### 2.1.2 Advantages and Limitations of PLSR Algorithm **Advantages:** * Can handle high-dimensional data and automatically perform dimensionality reduction. * Robust to collinear variables. * Can consider multiple response variables simultaneously. **Limitations:** * Prediction accuracy may be affected by noise and outliers. * PLSR algorithm's predictive ability is limited for nonlinear relationships. * The algorithm has high complexity and may require a longer computation time. ## 2. Implementing PLSR Algorithm in MATLAB ### 2.1 Mathematical Principles of PLSR Algorithm #### 2.1.1 Derivation of PLSR Algorithm Partial Least Squares Regression (PLSR) algorithm is a multivariate statistical regression technique used to analyze datasets with multicollinearity. Its goal is to find a set of linear regression equations that predict response variables (Y) as a linear combination of independent variables (X). The derivation process of PLSR algorithm is as follows: 1. **Centering and Standardizing Data:** Centering and standardizing X and Y to eliminate the effects of scale differences. 2. **Calculating Covariance Matrix:** Calculating the covariance matrix C between X and Y. 3. **Singular Value Decomposition:** Performing SVD on C to obtain three matrices U, S, and V. 4. **Extracting Eigenvectors:** Selecting the first k eigenvectors of U as the eigenvectors of X, denoted as P. 5. **Calculating Regression Coefficients:** Calculating regression coefficients B to minimize the sum of squared residuals between the predicted values Y^ and the linear combination of P. #### 2.1.2 Advantages and Limitations of PLSR Algorithm **Advantages:** * Able to handle multicollinearity data * Able to extract important features from the dataset * Has good predictive performance **Limitations:** * Sensitive to outliers * Difficult to interpret the model * May perform poorly when the relationship between independent variables and response variables is nonlinear ### 2.2 Function Implementation of PLSR Algorithm in MATLAB #### 2.2.1 Basic Usage of plsregress Function The `plsregress` function in MATLAB is used to implement the PLSR algorithm. Its basic syntax is as follows: ```matlab [B, FitInfo] = plsregress(Y, X, ncomp) ``` Where: * `Y`: Response variable matrix * `X`: Independent variable matrix * `ncomp`: Number of eigenvectors to be extracted Returns: * `B`: Regression coefficient matrix * `FitInfo`: Fitting information structure, containing fit quality, predictive power, and other indicators #### 2.2.2 Advanced Options of plsregress Function The `plsregress` function also provides many advanced options to control the behavior of the algorithm. These options include: * `Validation`: Specifies cross-validation methods * `Method`: Specifies the method for solving regression coefficients * `Scale`: Specifies whether to center and standardize the data * `WMode`: Specifies the weight mode ### 2.3 Model Evaluation of PLSR Algorithm #### 2.3.1 Model Fit Evaluation Indicators ***R^2:** Coefficient of determination, measures the fit of the model ***RMSE:** Root Mean Square Error, measures the average value of prediction errors ***MAE:** Mean Absolute Error, measures the average absolute value of prediction errors #### 2.3.2 Model Predictive Ability Evaluation Indicators ***Q^2:** Predictive sum of squares, measures the predictive ability of the model ***RMSEP:** Root Mean Square Error of Prediction, measures the root mean square value of prediction errors ***MAPE:** Mean Absolute Percentage Error, measures the average absolute percentage of prediction errors # 3. Application Examples of PLSR Algorithm in MATLAB ### 3.1 Application of PLSR in Spectral Data Analysis #### 3.1.1 Pretreatment of Spectral Data In spectral data analysis, the application of PLSR algorithm is mainly used to extract useful information from spectral data and establish prediction models between spectra and target variables. Before applying the PLSR algorithm, spectral data needs to be preprocessed to remove noise and interference information, ***mon spectral data preprocessing methods include: - **Standard Normal Variate Transformation (SNV):** Subtracting the mean from each spectral value at each wavelength, then dividing by the standard deviation, to eliminate the effects of spectral intensity differences. - **Multiplicative Scatter Correction (MSC):** Correcting baseline drift and path length variations in spectra due to scattering through a multiplicative factor. - **First Derivative and Second Derivative:** Enhancing spectral features and removing background noise by calculating the first or second derivative of the spectrum. #### 3.1.2 Establishment and Validation of PLSR Model After spectral data preprocessing, the PLSR model can be established. The `plsregress` function in MATLAB is used to create the PLSR model. ```matlab [XL,YL,XS,Y ```
corwn 最低0.47元/天 解锁专栏
买1年送3月
点击查看下一篇
profit 百万级 高质量VIP文章无限畅学
profit 千万级 优质资源任意下载
profit C知道 免费提问 ( 生成式Al产品 )

相关推荐

SW_孙维

开发技术专家
知名科技公司工程师,开发技术领域拥有丰富的工作经验和专业知识。曾负责设计和开发多个复杂的软件系统,涉及到大规模数据处理、分布式系统和高性能计算等方面。

专栏目录

最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )

最新推荐

优化SM2258XT固件性能:性能调优的5大实战技巧

![优化SM2258XT固件性能:性能调优的5大实战技巧](https://www.siliconmotion.com/images/products/diagram-SSD-Client-5.png) # 摘要 本文旨在探讨SM2258XT固件的性能优化方法和理论基础,涵盖固件架构理解、性能优化原理、实战优化技巧以及性能评估与改进策略。通过对SM2258XT控制器的硬件特性和工作模式的深入分析,揭示了其性能瓶颈和优化点。本文详细介绍了性能优化中关键的技术手段,如缓存优化、并行处理、多线程技术、预取和预测算法,并提供了实际应用中的优化技巧,包括固件更新、内核参数调整、存储器优化和文件系统调整

校园小商品交易系统:数据库备份与恢复策略分析

![校园小商品交易系统:数据库备份与恢复策略分析](https://www.fatalerrors.org/images/blog/57972bdbaccf9088f5207e61aa325c3e.jpg) # 摘要 数据库的备份与恢复是保障信息系统稳定运行和数据安全的关键技术。本文首先概述了数据库备份与恢复的重要性,探讨了不同备份类型和策略,以及理论模型和实施步骤。随后,详细分析了备份的频率、时间窗口以及校园小商品交易系统的备份实践,包括实施步骤、性能分析及优化策略。接着,本文阐述了数据库恢复的概念、原理、策略以及具体操作,并对恢复实践进行案例分析和评估。最后,展望了数据库备份与恢复技术的

SCADA与IoT的完美融合:探索物联网在SCADA系统中的8种应用模式

# 摘要 随着工业自动化和信息技术的发展,SCADA(Supervisory Control And Data Acquisition)系统与IoT(Internet of Things)的融合已成为现代化工业系统的关键趋势。本文详细探讨了SCADA系统中IoT传感器、网关、平台的应用模式,并深入分析了其在数据采集、处理、实时监控、远程控制以及网络优化等方面的作用。同时,本文也讨论了融合实践中的安全性和隐私保护问题,以及云集成与多系统集成的策略。通过实践案例的分析,本文展望了SCADA与IoT融合的未来趋势,并针对技术挑战提出了相应的应对策略。 # 关键字 SCADA系统;IoT应用模式;数

DDTW算法的并行化实现:如何加快大规模数据处理的5大策略

![DDTW算法的并行化实现:如何加快大规模数据处理的5大策略](https://opengraph.githubassets.com/52633498ed830584faf5561f09f766a1b5918f0b843ca400b2ebf182b7896471/PacktPublishing/GPU-Programming-with-C-and-CUDA) # 摘要 本文综述了DTW(Dynamic Time Warping)算法并行化的理论与实践,首先介绍了DDTW(Derivative Dynamic Time Warping)算法的重要性和并行化计算的基础理论,包括并行计算的概述、

【张量分析:控制死区宽度的实战手册】

# 摘要 张量分析的基础理论为理解复杂的数学结构提供了关键工具,特别是在控制死区宽度方面具有重要意义。本文深入探讨了死区宽度的概念、计算方法以及优化策略,并通过实战演练展示了在张量分析中控制死区宽度的技术与方法。通过对案例研究的分析,本文揭示了死区宽度控制在工业自动化、数据中心能源优化和高精度信号处理中的应用效果和效率影响。最后,本文展望了张量分析与死区宽度控制未来的发展趋势,包括与深度学习的结合、技术进步带来的新挑战和新机遇。 # 关键字 张量分析;死区宽度;数据处理;优化策略;自动化解决方案;深度学习 参考资源链接:[SIMATIC S7 PID控制:死区宽度与精准调节](https:

权威解析:zlib压缩算法背后的秘密及其优化技巧

![权威解析:zlib压缩算法背后的秘密及其优化技巧](https://opengraph.githubassets.com/bb5b91a5bf980ef7aed22f1934c65e6f40fb2b85eafa2fd88dd2a6e578822ee1/CrealityOfficial/zlib) # 摘要 本文全面介绍了zlib压缩算法,阐述了其原理、核心功能和实际应用。首先概述了zlib算法的基本概念和压缩原理,包括数据压缩与编码的区别以及压缩算法的发展历程。接着详细分析了zlib库的关键功能,如压缩级别和Deflate算法,以及压缩流程的具体实施步骤。文章还探讨了zlib在不同编程语

【前端开发者必备】:从Web到桌面应用的无缝跳转 - electron-builder与electron-updater入门指南

![【前端开发者必备】:从Web到桌面应用的无缝跳转 - electron-builder与electron-updater入门指南](https://opengraph.githubassets.com/7e5e876423c16d4fd2bae52e6e92178d8bf6d5e2f33fcbed87d4bf2162f5e4ca/electron-userland/electron-builder/issues/3061) # 摘要 本文系统介绍了Electron框架,这是一种使开发者能够使用Web技术构建跨平台桌面应用的工具。文章首先介绍了Electron的基本概念和如何搭建开发环境,

【步进电机全解】:揭秘步进电机选择与优化的终极指南

![步进电机说明书](https://www.linearmotiontips.com/wp-content/uploads/2018/09/Hybrid-Stepper-Motor-Illustration-1024x552.jpg) # 摘要 本文全面介绍了步进电机的工作原理、性能参数、控制技术、优化策略以及应用案例和未来趋势。首先,阐述了步进电机的分类和基本工作原理。随后,详细解释了步进电机的性能参数,包括步距角、扭矩和电气特性等,并提供了选择步进电机时应考虑的因素。接着,探讨了多种步进电机控制方式和策略,以及如何进行系统集成。此外,本文还分析了提升步进电机性能的优化方案和故障排除方法

无线通信新篇章:MDDI协议与蓝牙技术在移动设备中的应用对比

![无线通信新篇章:MDDI协议与蓝牙技术在移动设备中的应用对比](https://media.geeksforgeeks.org/wp-content/uploads/20190628115536/Capture441.jpg) # 摘要 本论文旨在对比分析MDDI与蓝牙这两种无线通信技术的理论基础、实践应用及性能表现。通过详尽的理论探讨与实际测试,本文深入研究了MDDI协议的定义、功能、通信流程以及其在移动设备中的实现和性能评估。同样地,蓝牙技术的定义、演进、核心特点以及在移动设备中的应用和性能评估也得到了全面的阐述。在此基础上,论文进一步对比了MDDI与蓝牙在数据传输速率、电池寿命、功

工业机器人编程实战:打造高效简单机器人程序的全攻略

![工业机器人编程实战:打造高效简单机器人程序的全攻略](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/ccf2ed3d5447429f95134cc69abe5ce8~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp?) # 摘要 工业机器人编程是自动化领域不可或缺的一部分,涵盖了从基础概念到高级应用的多个方面。本文全面梳理了工业机器人编程的基础知识,探讨了编程语言与工具的选用以及开发环境的搭建。同时,文章深入分析了机器人程序的结构化开发,包括模块化设计、工作流程管理、异常处理等关键技

专栏目录

最低0.47元/天 解锁专栏
买1年送3月
百万级 高质量VIP文章无限畅学
千万级 优质资源任意下载
C知道 免费提问 ( 生成式Al产品 )