非线性方程组求解的新混沌分形方法:基于牛顿-拉夫森法的迭代优化
需积分: 8 137 浏览量
更新于2024-08-11
收藏 1.7MB PDF 举报
本文主要探讨了混沌分形在解决非线性方程组求解问题中的应用,特别是针对牛顿-拉夫森(Newton-Raphson, NR)迭代方法的改进。混沌分形是动力系统中一种普遍的现象,牛顿-拉夫森法以其在一维和多维迭代中的重要性而闻名,但它的迭代过程对初始点极其敏感,这导致了非线性离散动力系统的Julia集。Julia集是牛顿-拉夫森法迭代中混沌分形现象的体现,作者巧妙地利用了这一特性。
作者提出了一种新颖的求解策略,即寻找牛顿-拉夫森函数的Julia点,这是一种特殊的点,它在Julia集上具有混沌分形的特性。通过这种方法,他们创造了一种基于牛顿-拉夫森法的非线性方程组求解算法,旨在克服传统方法如代数消元法(如结式消元、吴方法消元和Grobner基消元)可能遇到的冗长解或解的稀疏性问题。区间分析法尽管能够处理更广泛的解域,但在解决所有解的情况下可能会效率低下。
通过计算实例,作者证明了他们的新方法不仅有效,而且正确,这意味着它在实际工程问题中具有较高的实用性。这种方法的引入,特别是在优化设计领域,可能极大地推动了非线性方程组求解的效率和精度,使得解决复杂工程问题时能更快找到全局解,从而节省时间和资源。
总结来说,本文的核心贡献在于将混沌分形理论与牛顿-拉夫森迭代方法相结合,形成了一种创新的求解策略,对于提高非线性方程组求解的效率和准确性具有重要意义。此外,作者的工作还展示了混沌动力系统理论在解决实际工程问题中的潜在价值。
点击了解资源详情
点击了解资源详情
2009-03-14 上传
2021-05-09 上传
2020-08-06 上传
weixin_38664612
- 粉丝: 6
- 资源: 888
最新资源
- C语言数组操作:高度检查器编程实践
- 基于Swift开发的嘉定单车LBS iOS应用项目解析
- 钗头凤声乐表演的二度创作分析报告
- 分布式数据库特训营全套教程资料
- JavaScript开发者Robert Bindar的博客平台
- MATLAB投影寻踪代码教程及文件解压缩指南
- HTML5拖放实现的RPSLS游戏教程
- HT://Dig引擎接口,Ampoliros开源模块应用
- 全面探测服务器性能与PHP环境的iprober PHP探针v0.024
- 新版提醒应用v2:基于MongoDB的数据存储
- 《我的世界》东方大陆1.12.2材质包深度体验
- Hypercore Promisifier: JavaScript中的回调转换为Promise包装器
- 探索开源项目Artifice:Slyme脚本与技巧游戏
- Matlab机器人学习代码解析与笔记分享
- 查尔默斯大学计算物理作业HP2解析
- GitHub问题管理新工具:GIRA-crx插件介绍