Win10安装tensorflow-gpu1.8.0+python3.6全攻略(MX250+CUDA9.0+cudnn)
69 浏览量
更新于2024-09-07
收藏 562KB PDF 举报
"本资源详细介绍了在Windows 10环境下安装和使用TensorFlow GPU 1.8.0以及Python 3.6的完整步骤,特别针对拥有MX250显卡、CUDA 9.0和cuDNN的用户。内容包括检查显卡信息、安装CUDA和cuDNN、配置环境,以及安装TensorFlow-GPU的注意事项。"
在Windows 10操作系统中,安装TensorFlow-GPU 1.8.0以利用GPU加速机器学习模型的训练,需要遵循一系列步骤。首先,确认计算机的显卡型号,这里是MX250。MX250显卡适用于CUDA 9.0版本,因此,安装CUDA工具包时应选择与之兼容的版本。访问NVIDIA官方网站的历史版本库,下载CUDA 9.0,并按照默认设置进行安装,但避免集成到Visual Studio 2017中。
安装CUDA后,验证其是否成功,可以在命令行输入`nvcc --version`,如果返回CUDA版本信息,则表明安装成功。接着,安装cuDNN,这是TensorFlow-GPU运行所需的深度学习库。注册NVIDIA账户并下载与CUDA 9.0匹配的cuDNN版本。解压缩下载的文件,将包含的头文件和库文件复制到CUDA安装目录对应的文件夹下。
在安装完CUDA和cuDNN后,安装Python环境。此处提到使用的是Anaconda 3-5.1.0-Windows-x86_64,并且Python版本为3.6。在安装过程中,确保勾选添加环境变量选项,以便简化后续操作。创建名为“tensorflow”的conda环境,然后在这个环境中安装TensorFlow-GPU 1.8.0。
激活新创建的环境:`conda activate tensorflow`,然后在环境中安装TensorFlow-GPU,命令为:`pip install tensorflow-gpu==1.8.0`。安装完毕后,可以通过运行简单的TensorFlow代码来测试GPU是否被正确识别和使用。
这个过程可能会遇到的问题包括但不限于版本不兼容、环境变量配置错误、驱动程序更新需求等。确保所有软件和库的版本相互匹配,以及保持显卡驱动程序的最新状态,对于顺利运行TensorFlow-GPU至关重要。此外,遇到任何错误时,查阅官方文档或社区论坛通常能找到解决方案。
总结来说,要在Win10系统中使用MX250显卡运行TensorFlow-GPU 1.8.0,需要安装CUDA 9.0、cuDNN,并在Anaconda的特定环境中配置Python 3.6。整个过程需要对软件版本匹配、环境变量配置以及Python包管理有一定了解,遵循正确的步骤可以避免很多常见问题。
2021-01-20 上传
2020-07-08 上传
点击了解资源详情
点击了解资源详情
点击了解资源详情
点击了解资源详情
点击了解资源详情
点击了解资源详情
点击了解资源详情
weixin_38590456
- 粉丝: 1
- 资源: 883
最新资源
- C/C++语言贪吃蛇小游戏
- BeInformed_Backend:与covid-19相关新闻的网站
- python实例-11 根据IP地址查对应的地理信息.zip源码python项目实例源码打包下载
- 【Java毕业设计】【厦门大学毕业设计】蚁群算法实现vrp问题java版本.zip
- shippo:ねこのしっぽ∧_∧
- Graficacion-de-vientos-usando-NCL:NCL库用于从http中提取的grib2文件中提取数据的项目
- 洞洞板简易制作电压、电容表(原理图、程序及算法讲解)-电路方案
- Rainydays
- push-bot:PubSubHubbub 到 XMPP 网关
- XPL compiler:XPL到C转换器-开源
- 【Java毕业设计】java web 毕业设计.zip
- Fruitopia
- iaagofelipe
- 毕业设计论文-源码-ASP人事处网站的完善(设计源码.zip
- TwoLevelExpandableRecyclerView:用于创建两级可扩展回收站视图的库
- 新唐M451 PWM 控制电机弦波(源码)-电路方案