遥感图像运动模糊参数精确估计:Radon变换与复原技术
需积分: 19 5 浏览量
更新于2024-09-10
1
收藏 889KB PDF 举报
"基于Radon变换的遥感图像运动模糊参数精确估计.pdf"
本文是一篇关于遥感图像处理的学术论文,研究重点在于如何通过Radon变换精确估计运动模糊参数,从而实现遥感图像的复原。遥感图像的退化常常由于卫星传感器与观测目标之间的相对运动引起,这种运动模糊导致图像质量下降。为了改善这一问题,作者分析了运动模糊图像的频谱特性,提出了基于Radon变换的方法来估算模糊的角度和长度。
Radon变换是一种数学工具,常用于图像分析和处理,尤其是断层扫描和医学成像等领域。在本文中,它被用来确定图像退化的点扩散函数(PSF)。点扩散函数描述了图像中的每个点在成像过程中是如何扩散的,准确估计PSF对于恢复清晰图像至关重要。
然而,实际模糊图像的频谱中可能出现十字亮线,这会影响Radon变换的准确性。为解决这个问题,作者提出了一个改进算法,该算法结合了频谱分块和边缘检测技术,有效降低了十字亮线的干扰,从而提高了运动模糊参数的检测精度。
论文中还介绍了快速全变分去卷积(FTVd)算法,这是一种图像复原技术。在对实际运动模糊的对月遥感图像进行模糊参数估计后,应用FTVd算法进行图像恢复。实验结果表明,所提出的参数估计方法精确,图像复原效果良好。
这篇论文贡献了一种创新的遥感图像处理方法,通过改进的Radon变换技术和FTVd算法,提高了运动模糊遥感图像的复原质量和参数估计的准确性,对于遥感图像处理领域具有重要的理论和实践价值。该研究可以应用于各种遥感应用场景,如地球观测、环境监测等,有助于提升遥感数据的解析度和利用效率。
2013-04-07 上传
2019-09-12 上传
2019-08-07 上传
2019-07-22 上传
2019-08-07 上传
2021-06-29 上传
2023-08-11 上传
2020-06-05 上传
2019-09-07 上传
weixin_39840387
- 粉丝: 790
- 资源: 3万+
最新资源
- 探索数据转换实验平台在设备装置中的应用
- 使用git-log-to-tikz.py将Git日志转换为TIKZ图形
- 小栗子源码2.9.3版本发布
- 使用Tinder-Hack-Client实现Tinder API交互
- Android Studio新模板:个性化Material Design导航抽屉
- React API分页模块:数据获取与页面管理
- C语言实现顺序表的动态分配方法
- 光催化分解水产氢固溶体催化剂制备技术揭秘
- VS2013环境下tinyxml库的32位与64位编译指南
- 网易云歌词情感分析系统实现与架构
- React应用展示GitHub用户详细信息及项目分析
- LayUI2.1.6帮助文档API功能详解
- 全栈开发实现的chatgpt应用可打包小程序/H5/App
- C++实现顺序表的动态内存分配技术
- Java制作水果格斗游戏:策略与随机性的结合
- 基于若依框架的后台管理系统开发实例解析