深度梦境与影像匹配:TensorFlow2.0下的概率松弛算法解析

需积分: 50 21 下载量 115 浏览量 更新于2024-08-09 收藏 9.95MB PDF 举报
"松弛法整体影像匹配是影像处理中的一个重要技术,它用于提高单点匹配的可靠性。在传统的单点匹配中,仅依赖匹配窗口内的信息,可能忽视了匹配结果的全局一致性。为了改善这一点,松弛法整体影像匹配引入了概率松弛算法,考虑了匹配点之间的相容性。 在松弛法中,影像被看作是目标集合O与类别集合C的对应关系,目标O对应于参考影像的像素i,类别C对应于输入影像的像素j。影像匹配的目标是判断Oi是否属于Cj。为了增强匹配的可靠性,全局一致性是必须考虑的因素。这就需要用到相容系数C(i,j; h,k),它衡量Oi属于Cj同时Oh属于Ck的概率。 相容系数C(i,j; h,k)通常与局部的匹配度相关,如灰度分布的相似性。相关系数ρ( ih , jk )可以作为相容系数的测度,表示参考影像的区间ih与输入影像区间jk的相似程度。公式C(i,j;h,k)∝ρ( ih , jk )描述了这种关系。 在实际操作中,每个参考点i可能会对应多个候选匹配点,如j1、j2、j3。通过计算Pij(Oi属于Cj的概率)和C(i,j;h,k),可以进一步优化匹配结果,确保全局一致性。 此外,标签中提到的“雷达”和部分内容提及的“雷达干涉测量学”(InSAR)是遥感领域的核心技术。InSAR利用两个或多个雷达图像的相位差异来获取地表的微小变化信息,常用于地形测绘、地壳运动监测、环境变化研究等。InSAR的关键技术包括复数影像对的自动配准、干涉图噪声抑制、相位解缠和数字高程模型的提取等。该技术提供了高精度的三维测量能力,且适用于静态和动态地表特征的分析。 InSAR技术的应用广泛,如差分干涉测量(D-InSAR)能够揭示短期地表变形,对地质灾害、城市沉降等问题提供关键信息。书籍《雷达干涉测量学》深入探讨了InSAR的原理、信号处理基础及其在各个领域的应用,适合相关领域的研究人员、工程师和学生学习参考。"

2023-06-09 09:46:11.022252: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1900] Ignoring visible gpu device (device: 0, name: GeForce GT 610, pci bus id: 0000:01:00.0, compute capability: 2.1) with Cuda compute capability 2.1. The minimum required Cuda capability is 3.5. 2023-06-09 09:46:11.022646: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX AVX2 To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. WARNING:tensorflow:5 out of the last 9 calls to <function Model.make_test_function.<locals>.test_function at 0x0000017BB39D0670> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details. WARNING:tensorflow:6 out of the last 11 calls to <function Model.make_test_function.<locals>.test_function at 0x0000017BB3AE83A0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.

261 浏览量