优化Hadoop MapReduce性能:参数调优实战

需积分: 9 33 下载量 194 浏览量 更新于2024-07-21 收藏 1.8MB PDF 举报
"《Optimizing Hadoop for MapReduce_2014.2》探讨了如何优化MapReduce作业的执行,涉及多个方面的参数调整。" 本书深入解析了Hadoop MapReduce的性能优化策略,旨在帮助读者理解如何通过调整各种配置参数来提升MapReduce作业的效率。以下是各章节主要内容: 1. **理解Hadoop MapReduce** - **MapReduce模型**:介绍了MapReduce编程模型的基本概念,包括Mapper和Reducer阶段,以及它们在分布式计算中的作用。 - **Hadoop MapReduce概述**:概述了Hadoop MapReduce框架,强调其在大数据处理中的重要地位和工作原理。 - **Hadoop MapReduce内部机制**:详细讲解了MapReduce作业的生命周期,包括作业提交、任务调度、数据分片等过程。 - **影响MapReduce性能的因素**:分析了诸如数据局部性、数据预处理、负载均衡等因素对MapReduce性能的影响。 2. **Hadoop参数概览** - **调查Hadoop参数**:解释了为什么要关注和调整Hadoop的配置参数,以及参数如何影响作业性能。 - **mapred-site.xml配置文件**:详述了该文件中与MapReduce作业密切相关的参数设置,如任务并行度、内存分配等。 - **CPU相关参数**:讨论了如何调整CPU使用率,以平衡计算资源的利用。 - **磁盘I/O相关参数**:阐述了优化磁盘读写速度的策略,包括块大小、副本数量等。 - **内存相关参数**:讲解了如何合理分配MapReduce作业的内存,避免内存溢出问题。 - **网络相关参数**:涵盖了网络带宽和通信延迟的优化,确保数据传输高效。 - **hdfs-site.xml和core-site.xml配置文件**:分析了这两个配置文件中影响Hadoop整体性能的关键参数。 3. **Hadoop MapReduce性能监控工具** - **Hadoop MapReduce指标**:介绍了监控MapReduce作业的关键性能指标,如任务完成时间、CPU利用率等。 - **使用Chukwa进行监控**:阐述了Chukwa监控系统如何收集和分析Hadoop集群的数据,用于性能诊断和故障排查。 - **使用Ganglia监控Hadoop**:介绍了Ganglia监控系统的功能,它能提供实时的集群资源使用情况报告。 - **使用Nagios监控**:讨论了Nagios如何实现对Hadoop集群的健康状态和性能指标的监控,及时发现和报警问题。 这本书是针对Hadoop MapReduce优化的专业指南,无论你是初学者还是经验丰富的开发者,都能从中获取到有价值的性能调优技巧和实践经验。通过学习和应用这些知识,可以显著提高Hadoop集群的效率和吞吐量,从而更好地应对大规模数据处理的挑战。

(random.randint(0, bs_data[12]-1))*3+bs_data[8] 报错:Traceback (most recent call last): File "C:\Users\z84259074\AppData\Local\Programs\Python\Python310\lib\site-packages\pandas\core\indexes\base.py", line 3652, in get_loc return self._engine.get_loc(casted_key) File "pandas\_libs\index.pyx", line 147, in pandas._libs.index.IndexEngine.get_loc File "pandas\_libs\index.pyx", line 176, in pandas._libs.index.IndexEngine.get_loc File "pandas\_libs\hashtable_class_helper.pxi", line 7080, in pandas._libs.hashtable.PyObjectHashTable.get_item File "pandas\_libs\hashtable_class_helper.pxi", line 7088, in pandas._libs.hashtable.PyObjectHashTable.get_item KeyError: 12 The above exception was the direct cause of the following exception: Traceback (most recent call last): File "d:\Users\z84259074\PycharmProjects\参数自优化\self_optimizing.py", line 128, in <module> data = optimizing() File "d:\Users\z84259074\PycharmProjects\参数自优化\self_optimizing.py", line 15, in __init__ self.optimizing_main() File "d:\Users\z84259074\PycharmProjects\参数自优化\self_optimizing.py", line 124, in optimizing_main self.child2=self.mutation_cdata(fitness_data,self.cross_data) File "d:\Users\z84259074\PycharmProjects\参数自优化\self_optimizing.py", line 92, in mutation_cdata print('cross_data[波束场景No]',bs_data[12]) File "C:\Users\z84259074\AppData\Local\Programs\Python\Python310\lib\site-packages\pandas\core\frame.py", line 3761, in __getitem__ indexer = self.columns.get_loc(key) File "C:\Users\z84259074\AppData\Local\Programs\Python\Python310\lib\site-packages\pandas\core\indexes\base.py", line 3654, in get_loc raise KeyError(key) from err KeyError: 12

2023-07-14 上传

bs_data = w_data[w_data['波束场景No'] == cross_data['波束场景No'][0]] 报错:Traceback (most recent call last): File "C:\Users\z84259074\AppData\Local\Programs\Python\Python310\lib\site-packages\pandas\core\indexes\base.py", line 3652, in get_loc return self._engine.get_loc(casted_key) File "pandas\_libs\index.pyx", line 147, in pandas._libs.index.IndexEngine.get_loc File "pandas\_libs\index.pyx", line 176, in pandas._libs.index.IndexEngine.get_loc File "pandas\_libs\hashtable_class_helper.pxi", line 7080, in pandas._libs.hashtable.PyObjectHashTable.get_item File "pandas\_libs\hashtable_class_helper.pxi", line 7088, in pandas._libs.hashtable.PyObjectHashTable.get_item KeyError: '波束场景No' The above exception was the direct cause of the following exception: Traceback (most recent call last): File "D:\Users\z84259074\PycharmProjects\参数自优化\self_optimizing.py", line 127, in <module> data = optimizing() File "D:\Users\z84259074\PycharmProjects\参数自优化\self_optimizing.py", line 18, in __init__ self.optimizing_main() File "D:\Users\z84259074\PycharmProjects\参数自优化\self_optimizing.py", line 120, in optimizing_main self.child2=self.mutation_cdata(fitness_data,self.cross_data) File "D:\Users\z84259074\PycharmProjects\参数自优化\self_optimizing.py", line 86, in mutation_cdata bs_data = w_data[w_data['波束场景No'] == cross_data['波束场景No'][0]] File "C:\Users\z84259074\AppData\Local\Programs\Python\Python310\lib\site-packages\pandas\core\frame.py", line 3761, in __getitem__ indexer = self.columns.get_loc(key) File "C:\Users\z84259074\AppData\Local\Programs\Python\Python310\lib\site-packages\pandas\core\indexes\base.py", line 3654, in get_loc raise KeyError(key) from err KeyError: '波束场景No'

2023-07-14 上传