实时视觉惯性里程计的On-Manifold预集成技术

需积分: 10 2 下载量 55 浏览量 更新于2024-07-18 收藏 3.55MB PDF 举报
"On-Manifold Preintegration for Real-Time vio 是一篇关于实时视觉惯性里程计技术的学术论文,由Christian Forster, Luca Carlone, Frank Dellaert 和 Davide Scaramuzza等人撰写,并发表在IEEE Transactions on Robotics上。该论文提出了一种新的方法来解决视觉惯性里程计(VIO)在实时优化中的效率问题。 在当前的视觉惯性里程计系统中,通过非线性优化可以获得高度精确的状态估计。然而,随着轨迹的增长,实时优化的计算负担会迅速增加,特别是由于惯性传感器(如陀螺仪和加速度计)以高频率提供测量数据,导致优化问题中的变量数量快速增加,这使得实时处理变得困难。 针对这一挑战,论文提出了"on-manifold preintegration"的概念,即在选定的关键帧之间预先整合惯性测量数据,将其转换为单一的相对运动约束。这种方法的主要贡献在于它能够在保持精度的同时,减少在线优化中的变量数量,提高了实时性。 On-manifold preintegration的核心思想是保持运算在惯性测量的自然流形(如旋转群SO(3)和加速度空间)上进行,以避免不必要的坐标变换和数值误差。通过这种方式,可以预先计算出两个关键帧之间的旋转和平移增量,形成紧凑的约束,用于后续的优化过程。 论文详细介绍了该方法的数学框架,包括如何在流形上执行积分以及如何处理漂移误差。此外,还讨论了如何将这些预积分约束集成到现有的视觉惯性滤波或滑窗优化框架中。实验结果证明,这种方法能够有效地减少计算负担,提高系统的实时性能,同时保持高精度的定位结果。 "On-Manifold Preintegration for Real-Time vio"为解决视觉惯性导航系统中的实时性和计算效率问题提供了一个创新解决方案,对移动机器人、无人机导航以及其他需要精确实时定位的应用具有重要价值。"
2020-04-06 上传
Abstract: Current approaches for visual-inertial odometry (VIO) are able to attain highly accurate state estimation via nonlinear optimization. However, real-time optimization quickly becomes infeasible as the trajectory grows over time; this problem is further emphasized by the fact that inertial measurements come at high rate, hence leading to fast growth of the number of variables in the optimization. In this paper, we address this issue by preintegrating inertial measurements between selected keyframes into single relative motion constraints. Our first contribution is a preintegration theory that properly addresses the manifold structure of the rotation group. We formally discuss the generative measurement model as well as the nature of the rotation noise and derive the expression for the maximum a posteriori state estimator. Our theoretical development enables the computation of all necessary Jacobians for the optimization and a-posteriori bias correction in analytic form. The second contribution is to show that the preintegrated IMU model can be seamlessly integrated into a visual-inertial pipeline under the unifying framework of factor graphs. This enables the application of incremental-smoothing algorithms and the use of a structureless model for visual measurements, which avoids optimizing over the 3D points, further accelerating the computation. We perform an extensive evaluation of our monocular VIO pipeline on real and simulated datasets. The results confirm that our modelling effort leads to accurate state estimation in real-time, outperforming state-of-the-art approaches.