北京邮电大学模式识别课件:参数估计与非参数估计详解
需积分: 0 108 浏览量
更新于2024-07-17
收藏 584KB PPT 举报
本篇分享的北京邮电大学模式识别课件主要探讨了模式识别导论的第五章——参数估计与非参数估计。章节内容涵盖了监督学习与无监督学习的区别,以及参数估计与非参数估计的理论基础。
参数估计部分,课程强调了在设计贝叶斯分类器时,参数的重要性,如先验概率、条件概率和后验概率。参数估计理论中,首先假设待估参数是已知但未知的,学习样本被分为M类,并且每个类别的样本独立且符合特定的概率分布。最大似然估计方法被用来估计参数,通过计算样本出现概率的乘积取对数,然后对参数求导找到使概率最大的估计值。尽管可能存在多解,但最大似然估计会选择使得似然函数最大化的那个解。
非参数估计则不同,它不依赖于预先设定的数学模型,而是直接利用学习样本的统计特性来构建模型,这种做法在没有明确假设模型的情况下非常有用。例如,在无监督学习中,聚类分析是一种典型的非参数估计方法,它仅依靠样本数据本身的特性进行分析,而不涉及任何先验模型。
本章深入浅出地介绍了监督学习,包括其在参数估计和非参数估计中的应用,以及最大似然估计这一重要概念。通过理解这些理论,学习者能够掌握如何在实际问题中选择合适的估计方法,以提高模式识别的精度和效率。此外,非参数估计的灵活性也为处理复杂数据提供了新的视角。在整个课程中,MATLAB作为工具可能也会被用来演示和实现这些理论。
2019-08-13 上传
2019-08-13 上传
2019-08-13 上传
点击了解资源详情
weixin_39840515
- 粉丝: 448
- 资源: 1万+
最新资源
- Raspberry Pi OpenCL驱动程序安装与QEMU仿真指南
- Apache RocketMQ Go客户端:全面支持与消息处理功能
- WStage平台:无线传感器网络阶段数据交互技术
- 基于Java SpringBoot和微信小程序的ssm智能仓储系统开发
- CorrectMe项目:自动更正与建议API的开发与应用
- IdeaBiz请求处理程序JAVA:自动化API调用与令牌管理
- 墨西哥面包店研讨会:介绍关键业绩指标(KPI)与评估标准
- 2014年Android音乐播放器源码学习分享
- CleverRecyclerView扩展库:滑动效果与特性增强
- 利用Python和SURF特征识别斑点猫图像
- Wurpr开源PHP MySQL包装器:安全易用且高效
- Scratch少儿编程:Kanon妹系闹钟音效素材包
- 食品分享社交应用的开发教程与功能介绍
- Cookies by lfj.io: 浏览数据智能管理与同步工具
- 掌握SSH框架与SpringMVC Hibernate集成教程
- C语言实现FFT算法及互相关性能优化指南