Apache Flume与Hadoop日志收集详解

4星 · 超过85%的资源 需积分: 10 16 下载量 129 浏览量 更新于2024-07-19 收藏 2.12MB PDF 举报
"Apache Flume 分布式日志收集系统用于Hadoop的高清完整中文版PDF" Apache Flume 是一个分布式、可靠且可用的服务,专门设计用于高效地收集、聚合和移动大量日志数据到Hadoop集群。这本书"Apache Flume: Distributed Log Collection for Hadoop"由Steve Hoffman撰写,详细介绍了如何利用Flume来流式传输数据到Hadoop。 Flume的核心概念包括源(Sources)、通道(Channels)和接收器(Sinks)。源是Flume数据流入的起点,可以是从网络服务器获取的日志流,或者其他数据产生器。它们负责读取数据并将其推入系统。通道是数据在Flume内部流动的临时存储区域,它是容错的关键组件,确保数据在被处理或传输前得到安全存储。接收器是Flume的终点,它们负责将数据从通道移出并发送到下一个目的地,如Hadoop的HDFS(Hadoop分布式文件系统)。 Flume的优点之一是其可扩展性和灵活性。通过简单地添加更多的节点和配置,它可以轻松适应不断增长的数据量。此外,Flume支持多种数据源和接收器类型,允许连接到各种不同的数据源和目的地,如Web服务器日志、社交媒体流、消息队列等。其插件架构使得开发自定义组件变得容易,以满足特定的集成需求。 书中可能涵盖了Flume的基本配置和操作,包括如何创建Flume代理(Agents),这些代理是Flume实例,每个都有自己的源、通道和接收器配置。此外,还可能讲解了Flume的数据流模型,以及如何通过级联多个Flume代理实现复杂的数据流路径。 作者可能讨论了Flume的高级特性,例如动态路由、数据转换和故障切换策略。动态路由允许根据数据内容或外部条件改变数据流路径。数据转换功能可以对收集的数据进行预处理,如过滤、格式化或聚合。而故障切换策略确保在组件失败时,Flume能够优雅地处理并恢复,保持数据完整性。 在与Hadoop的集成方面,书中的内容可能会涉及如何将Flume与Hadoop生态系统其他组件(如HBase、Hive或Storm)结合使用,实现更全面的数据处理和分析工作流。此外,可能会介绍如何利用Flume的事件模型来处理实时数据流,这对于实时分析和大数据应用至关重要。 最后,考虑到版权声明,此书的副本仅供个人学习和参考,不得未经许可进行复制或分发。虽然出版方尽力确保书中信息的准确性,但不承担因使用本书内容而直接或间接造成的任何损害的责任。对于书中提到的所有公司和产品的商标信息,出版方已尽量使用适当的大小写表示,但不能保证信息的完全准确。该书最初于2013年7月出版,可能反映了当时的Flume版本和Hadoop生态系统的状况。 这本书提供了深入理解Apache Flume如何作为强大的日志收集工具在Hadoop环境中工作的全面指南,对从事大数据处理和日志分析的IT专业人员来说是一份宝贵的资源。
2015-07-02 上传
Apache Flume is a distributed, reliable, and available service for efficiently collecting, aggregating, and moving large amounts of log data. Its main goal is to deliver data from applications to Apache Hadoop's HDFS. It has a simple and flexible architecture based on streaming data flows. It is robust and fault tolerant with many failover and recovery mechanisms. Apache Flume: Distributed Log Collection for Hadoop covers problems with HDFS and streaming data/logs, and how Flume can resolve these problems. This book explains the generalized architecture of Flume, which includes moving data to/from databases, NO-SQL-ish data stores, as well as optimizing performance. This book includes real-world scenarios on Flume implementation. Apache Flume: Distributed Log Collection for Hadoop starts with an architectural overview of Flume and then discusses each component in detail. It guides you through the complete installation process and compilation of Flume. It will give you a heads-up on how to use channels and channel selectors. For each architectural component (Sources, Channels, Sinks, Channel Processors, Sink Groups, and so on) the various implementations will be covered in detail along with configuration options. You can use it to customize Flume to your specific needs. There are pointers given on writing custom implementations as well that would help you learn and implement them. By the end, you should be able to construct a series of Flume agents to transport your streaming data and logs from your systems into Hadoop in near real time.