硅光子学微结构:新型光学涡旋与超窄带近红外完美吸收应用探索

0 下载量 134 浏览量 更新于2024-08-27 收藏 3.24MB PDF 举报
"该研究深入探讨了一种新颖的硅光子学微结构,这些微结构支持光学涡旋和波导,以实现超窄带近红外光的完美吸收。通过设计硅光子学超材料,研究人员旨在优化近红外光的吸收性能,对相关物理机制进行了深入的理论与实验研究。" 在硅光子学领域,本文提出了一种创新的设计理念,即利用特殊构造的微结构来实现对近红外光的近乎完美的吸收。这一技术基于硅光子学超材料,这是一种具有独特光学特性的材料,能够对特定波长的光进行高效操控。研究的核心在于对不同物理机制的深入分析,这些机制是实现约100%的超窄带近红外光吸收的关键。 光学涡旋是一种具有螺旋相位的光束,其光场携带轨道角动量,这使得它们在信息传输、量子光学以及光与物质相互作用等领域有广泛应用。结合波导技术,这些微结构可以引导并控制光在纳米尺度上的传播,从而优化吸收效率。在硅基平台上实现这样的光子学设计,不仅能够提高光吸收的效率,还可能降低系统尺寸和功耗,这对于集成光电子设备来说尤其重要。 研究团队来自以色列的多个学术机构,包括Ben-Gurion大学的电气和计算机工程学院、Shamoon College of Engineering的电子与电气工程系、Jerusalem College of Technology的电气工程学院以及Ilse Katz Institute for Nanoscale Science & Technology。他们的工作经过了多次修订和完善,最终在2020年发表,为硅光子学领域开辟了新的研究方向。 文章详细描述了设计和实验过程,包括微结构的几何参数优化、光吸收的理论计算以及实验验证。通过对不同参数的调整,研究者探索了如何最大化近红外光的吸收,同时保持超窄的吸收带宽。这些发现对于提升光探测器、太阳能电池和光通信系统的性能有着重大意义。 这项研究深入剖析了新型硅光子学微结构的设计与应用,特别是在近红外光的高效吸收方面,这将对未来的光电子技术和光子学器件设计产生深远影响。通过理解并利用这些微结构背后的物理原理,科研人员有望开发出更先进、更高效的光子集成系统,推动信息技术的持续进步。

Heatwaves impose serious impacts on ecosystems, human health, agriculture, and energy consumption. Previous studies have classified heatwaves into independent daytime, independent nighttime, and compound daytime-nighttime types, and examined the long-term changes in the three types. However, the underlying mechanisms associated with the variations in different heatwave types remain poorly understood. Here we present the first investigation of the local physical processes associated with the daytime, nighttime, and compound heatwaves over the global land during 1979–2020. The results show that three heatwave types occur frequently and increasingly in most regions worldwide. Nighttime and compound heatwaves exhibit stronger increases in both frequency (the yearly number of the events) and fraction (the ratio of the yearly number of one heatwave type to the total yearly number of all types) than daytime heatwaves. Composite diagnostic analyses of local meteorological variables suggest that daytime heatwaves are associated with increased solar radiation under dry conditions and reduced cloud cover and humidity under a clear sky. In contrast, nighttime heatwaves are typically accompanied by moist conditions with increases in cloud fraction, humidity, and longwave radiation at night. These synoptic conditions for daytime and nighttime heatwaves are combined to contribute to compound heatwaves. Local divergences and moisture fluxes responsible for different heatwaves are further revealed. Positive moisture divergence anomalies are seen in most land areas for daytime and compound heatwaves, while they mainly appear in low latitudes for nighttime heatwaves. Our research provides a comprehensive understanding of the local mechanisms of different heatwave types, informing future risks and impact assessments.分析语言特征

2023-06-08 上传