Actively Q-switched ytterbium-doped fiber laser
by an all-optical Q-switcher based on graphene
saturable absorber
Aibing Ren,
1
Ming Feng,
1,*
Feng Song,
1,2
Yangyang Ren,
1
Shuai Yang,
1
Zhenguo Yang,
1
Yigang Li,
1
Zhibo Liu,
1
and Jianguo Tian
1
1
The Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA
Applied Physics School, Nankai University, Tianjin 300071, China
2
fsong@nankai.edu.cn
*
mingfeng@nankai.edu.cn
Abstract: We demonstrate an all-optical Q-switcher based on graphene
saturable absorber (GSA). Due to the cross absorption modulation (XAM)
effect in graphene, we can change the transmittance of signal light
periodically by introducing a train of laser pulses into graphene. This allows
controlling the Q-factor of the cavity. This Q-switcher has many advantages
such as all-fiber structure, all-optical modulation, broadband applications.
With this Q-switcher, we have successfully fabricated an actively Q-
switched ytterbium-doped fiber laser. The pulse repetition rate can be tuned
from 30.32 kHz to 101.29 kHz. What’s more, synchronization of the Q-
switched laser pulses and modulation laser pulses can be realized, which
has many potential applications such as nonlinear frequency conversion,
multi-color pump probe spectroscopy and Raman scattering spectroscopy.
©2015 Optical Society of America
OCIS codes: (060.3510) Lasers, fiber; (140.3540) Lasers, Q-switched; (230.1150) All-optical
devices; (160.4236) Nanomaterials.
References and links
1. R. Paschotta, R. Häring, E. Gini, H. Melchior, U. Keller, H. L. Offerhaus, and D. J. Richardson, “Passively Q-
switched 0.1-mJ fiber laser system at 1.53 µm,” Opt. Lett. 24(6), 388–390 (1999).
2. M. Laroche, A. M. Chardon, J. Nilsson, D. P. Shepherd, W. A. Clarkson, S. Girard, and R. Moncorgé, “Compact
diode-pumped passively Q-switched tunable Er-Yb double-clad fiber laser,” Opt. Lett. 27(22), 1980–19
82
(
2002).
3. D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,”
Appl. Phys. Lett. 98(7), 073106 (2011).
4. S. Kivistö, R. Koskinen, J. Paajaste, S. D. Jackson, M. Guina, and O. G. Okhotnikov, “Passively Q-switched
Tm
3+
, Ho
3+
-doped silica fiber laser using a highly nonlinear saturable absorber and dynamic gain pulse
compression,” Opt. Express 16(26), 22058–22063 (2008).
5. A. Martinez, K. Zhou, I. Bennion, and S. Yamashita, “Passive mode-locked lasing by injecting a carbon
nanotube-solution in the core of an optical fiber,” Opt. Express 18(11), 11008–11014 (2010).
6. T. Schibli, K. Minoshima, H. Kataura, E. Itoga, N. Minami, S. Kazaoui, K. Miyashita, M. Tokumoto, and Y.
Sakakibara, “Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded car
bon
nanotubes,
” Opt. Express 13(20), 8025–8031 (2005).
7. J. Liu, S. Wu, Q. H. Yang, and P. Wang, “Stable nanosecond pulse generation from a graphene-based passively
Q-switched Yb-doped fiber laser,” Opt. Lett. 36(20), 4008–4010 (2011).
8. Q. Sheng, M. Feng, W. Xin, T. Han, Y. Liu, Z. Liu, and J. Tian, “Actively manipulation of operation states in
passively pulsed fiber lasers by using graphene saturable absorber on microfiber,” Opt. Express 21(12), 14859–
14866 (2013).
9. Z. Luo, M. Zhou, J. Weng, G. Huang, H. Xu, C. Ye, and Z. Cai, “Graphene-based passively Q-switched dual-
wavelength erbium-doped fiber laser,” Opt. Lett. 35(21), 3709–3711 (2010).
10. Z. Luo, Y. Huang, J. Weng, H. Cheng, Z. Lin, B. Xu, Z. Cai, and H. Xu, “1.06 μm Q-switched ytterbium-
doped
fiber laser using few-layer topological insulator Bi₂Se₃ as a saturable absorber,” Opt. Express 21(24), 29516–
29522 (2013).
11. H. H. Kee, G. P. Lees, and T. P. Newson, “Narrow linewidth CW and Q-switched erbium-doped fibr
e loop
laser,”
Electron. Lett. 34(13), 1318–1319 (1998).
Received 3 Jun 2015; revised 22 Jul 2015; accepted 26 Jul 2015; published 7 Aug 2015
10 Aug 2015 | Vol. 23, No. 16 | DOI:10.1364/OE.23.021490 | OPTICS EXPRESS 21490