Pearls of discrete mathematics

Pearls of discrete mathematics Pearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematicsPearls of discrete mathematics Contents I Counting: Basic 1 1 Subsets of a Set 3 2 Pascal’s Triangle 5 3 Binomial Coefficient Identities 11 II Counting: Intermediate 19 4 Finding a Polynomial 21 5 The Upward-Extended Pascal’s Triangle 25 6 Recurrence Relations and Fibonacci Numbers 27 III Counting: Advanced 37 7 Generating Functions and Making Change 39 8 Integer Triangles 49 9 Rook Paths and Queen Paths 53 IV Discrete Probability 65 10 Probability Spaces and Distributions 67 11 Markov Chains 81 12 Random Tournaments 91 V Number Theory 95 13 Divisibility of Factorials and Binomial Coefficients 97 14 Covering Systems 103





剩余280页未读,继续阅读














评论1