没有合适的资源?快使用搜索试试~ 我知道了~
首页ANSYS Fluent 18.1 用户手册:流体动力学理论指南
ANSYS Fluent 18.1 用户手册:流体动力学理论指南
5星 · 超过95%的资源 需积分: 50 43 下载量 84 浏览量
更新于2023-03-16
1
收藏 44.35MB PDF 举报
"ANSYS Fluent 18.1用户手册是针对这款流行的商业CFD(计算流体动力学)软件的理论指南,由ANSYS公司发布。Fluent软件在多个行业中广泛应用,包括航空航天、汽车设计、石油天然气和涡轮机设计等。该手册涵盖了丰富的物理模型、先进的数值方法以及强大的数据处理功能。"
ANSYS Fluent是一款全球领先的计算流体动力学软件,其18.1版本提供了许多关键特性和改进。在流体力学模拟领域,Fluent以其准确性和效率而闻名,能够处理复杂的流体流动、热传递和化学反应问题。以下是ANSYS Fluent 18.1的一些核心知识点:
1. **物理模型**:Fluent支持多种物理模型,如连续介质力学、粘性流、无粘流、湍流模型(如RANS和LES)、多相流、燃烧和化学反应、传热(对流、辐射和导热)等。这些模型允许用户根据实际工程问题选择合适的模拟方法。
2. **数值方法**:Fluent采用有限体积法进行数值求解,确保了对流、扩散和源项的精确处理。它还支持不同的离散方案,如第一阶迎风、第二阶中心差分和高阶精度方法,以平衡计算精度和稳定性。
3. **网格系统**:Fluent内置了强大的网格生成工具ICEM CFD,支持结构化、非结构化和混合网格,使得用户可以处理各种几何形状和复杂边界条件。
4. **前处理与后处理**:Fluent提供直观的图形用户界面(GUI)进行几何导入、网格操作和边界条件设置。后处理功能强大,能生成各种可视化结果,如流线图、速度矢量图、温度分布图等。
5. **自动化与脚本功能**:通过ANSYS Workbench集成,Fluent可以与其他ANSYS产品协同工作,实现多物理场模拟。同时,它支持脚本编程(如Python和Moose),用于自动化工作流程和定制化分析。
6. **并行计算**:Fluent支持大规模并行计算,利用MPI(消息传递接口)在多处理器系统或集群上运行,大幅提升了计算效率,尤其对于大型复杂问题。
7. **求解器优化**:Fluent 18.1可能包含了求解器性能的提升,如更快的收敛速度、更稳定的求解策略和优化内存管理,使得用户能够在较短时间内获得准确的解决方案。
8. **专业应用模块**:Fluent还提供了专门针对特定行业的模块,如汽车行业的热管理和航空航天的气动声学,进一步增强了其在各领域的应用能力。
9. **用户自定义模型**:用户可以通过UDF(用户定义函数)来扩展Fluent的功能,实现自定义的物理模型或算法,以满足特定研究需求。
10. **技术支持与社区**:ANSYS公司提供了全面的技术支持和丰富的在线资源,包括文档、教程和用户论坛,帮助用户解决在使用过程中遇到的问题。
ANSYS Fluent 18.1是一个功能强大的CFD工具,适用于各种工程和科研中的流体动力学问题,其强大的功能和易用性使其成为行业内的首选软件。
16.3. Laws for Drag Coefficients ........................................................................................................... 399
16.3.1. Spherical Drag Law ............................................................................................................. 400
16.3.2. Non-spherical Drag Law ..................................................................................................... 400
16.3.3. Stokes-Cunningham Drag Law ............................................................................................ 400
16.3.4. High-Mach-Number Drag Law ............................................................................................ 401
16.3.5. Dynamic Drag Model Theory .............................................................................................. 401
16.3.6. Dense Discrete Phase Model Drag Laws .............................................................................. 401
16.3.7. Bubbly Flow Drag Laws ...................................................................................................... 402
16.3.7.1. Ishii-Zuber Drag Model .............................................................................................. 402
16.3.7.2. Grace Drag Model ...................................................................................................... 403
16.3.8. Rotational Drag Law ........................................................................................................... 403
16.4. Laws for Heat and Mass Exchange ............................................................................................... 404
16.4.1. Inert Heating or Cooling (Law 1/Law 6) ............................................................................... 404
16.4.2. Droplet Vaporization (Law 2) ............................................................................................... 406
16.4.2.1. Mass Transfer During Law 2—Diffusion Controlled Model ........................................... 407
16.4.2.2. Mass Transfer During Law 2—Convection/Diffusion Controlled Model ........................ 408
16.4.2.3. Defining the Saturation Vapor Pressure and Diffusion Coefficient (or Binary Diffusiv-
ity) ......................................................................................................................................... 408
16.4.2.4. Defining the Boiling Point and Latent Heat ................................................................. 409
16.4.2.5. Heat Transfer to the Droplet ....................................................................................... 410
16.4.3. Droplet Boiling (Law 3) ....................................................................................................... 412
16.4.4. Devolatilization (Law 4) ...................................................................................................... 413
16.4.4.1. Choosing the Devolatilization Model .......................................................................... 413
16.4.4.2.The Constant Rate Devolatilization Model ................................................................... 413
16.4.4.3.The Single Kinetic Rate Model .................................................................................... 414
16.4.4.4.The Two Competing Rates (Kobayashi) Model ............................................................. 415
16.4.4.5.The CPD Model .......................................................................................................... 415
16.4.4.5.1. General Description .......................................................................................... 415
16.4.4.5.2. Reaction Rates .................................................................................................. 416
16.4.4.5.3. Mass Conservation ............................................................................................ 417
16.4.4.5.4. Fractional Change in the Coal Mass .................................................................... 417
16.4.4.5.5. CPD Inputs ........................................................................................................ 418
16.4.4.5.6. Particle Swelling During Devolatilization ............................................................ 419
16.4.4.5.7. Heat Transfer to the Particle During Devolatilization ........................................... 420
16.4.5. Surface Combustion (Law 5) ............................................................................................... 420
16.4.5.1.The Diffusion-Limited Surface Reaction Rate Model .................................................... 421
16.4.5.2.The Kinetic/Diffusion Surface Reaction Rate Model ..................................................... 421
16.4.5.3. The Intrinsic Model .................................................................................................... 422
16.4.5.4.The Multiple Surface Reactions Model ........................................................................ 423
16.4.5.4.1. Limitations ........................................................................................................ 424
16.4.5.5. Heat and Mass Transfer During Char Combustion ....................................................... 424
16.4.6. Multicomponent Particle Definition (Law 7) ........................................................................ 424
16.4.6.1. Raoult’s Law .............................................................................................................. 426
16.4.6.2. Peng-Robinson Real Gas Model .................................................................................. 426
16.5.Vapor Liquid Equilibrium Theory .................................................................................................. 426
16.6. Physical Property Averaging ........................................................................................................ 428
16.7.Wall-Particle Reflection Model Theory .......................................................................................... 430
16.7.1. Rough Wall Model .............................................................................................................. 432
16.8.Wall-Jet Model Theory ................................................................................................................. 434
16.9.Wall-Film Model Theory ............................................................................................................... 435
16.9.1. Introduction ....................................................................................................................... 435
16.9.2. Interaction During Impact with a Boundary ......................................................................... 436
Release 18.1 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.xvi
Theory Guide
16.9.2.1. The Stanton-Rutland Model ....................................................................................... 437
16.9.2.1.1. Regime Definition ............................................................................................. 437
16.9.2.1.2. Rebound ........................................................................................................... 438
16.9.2.1.3. Splashing .......................................................................................................... 438
16.9.2.2.The Kuhnke Model ..................................................................................................... 443
16.9.2.2.1. Regime definition ............................................................................................. 443
16.9.2.2.2. Rebound ........................................................................................................... 446
16.9.2.2.3. Splashing .......................................................................................................... 446
16.9.3. Separation Criteria .............................................................................................................. 449
16.9.4. Conservation Equations for Wall-Film Particles .................................................................... 449
16.9.4.1. Momentum ............................................................................................................... 449
16.9.4.2. Mass Transfer from the Film ........................................................................................ 450
16.9.4.2.1. Film Vaporization and Boiling ............................................................................ 450
16.9.4.2.2. Film Condensation ............................................................................................ 453
16.9.4.3. Energy Transfer from the Film ..................................................................................... 454
16.10. Wall Erosion .............................................................................................................................. 456
16.10.1. Finnie Erosion Model ........................................................................................................ 457
16.10.2. Oka Erosion Model ........................................................................................................... 457
16.10.3. McLaury Erosion Model .................................................................................................... 458
16.10.4. Accretion ......................................................................................................................... 459
16.11. Particle–Wall Impingement Heat Transfer Theory ....................................................................... 460
16.12. Atomizer Model Theory ............................................................................................................. 462
16.12.1.The Plain-Orifice Atomizer Model ...................................................................................... 462
16.12.1.1. Internal Nozzle State ................................................................................................ 464
16.12.1.2. Coefficient of Discharge ........................................................................................... 465
16.12.1.3. Exit Velocity ............................................................................................................. 466
16.12.1.4. Spray Angle ............................................................................................................. 467
16.12.1.5. Droplet Diameter Distribution .................................................................................. 467
16.12.2.The Pressure-Swirl Atomizer Model ................................................................................... 468
16.12.2.1. Film Formation ........................................................................................................ 469
16.12.2.2. Sheet Breakup and Atomization ............................................................................... 470
16.12.3.The Air-Blast/Air-Assist Atomizer Model ............................................................................. 472
16.12.4.The Flat-Fan Atomizer Model ............................................................................................. 473
16.12.5.The Effervescent Atomizer Model ...................................................................................... 474
16.13. Secondary Breakup Model Theory ............................................................................................. 475
16.13.1.Taylor Analogy Breakup (TAB) Model ................................................................................. 475
16.13.1.1. Introduction ............................................................................................................ 475
16.13.1.2. Use and Limitations ................................................................................................. 476
16.13.1.3. Droplet Distortion .................................................................................................... 476
16.13.1.4. Size of Child Droplets ............................................................................................... 477
16.13.1.5.Velocity of Child Droplets ......................................................................................... 478
16.13.1.6. Droplet Breakup ...................................................................................................... 478
16.13.2. Wave Breakup Model ........................................................................................................ 479
16.13.2.1. Introduction ............................................................................................................ 479
16.13.2.2. Use and Limitations ................................................................................................. 480
16.13.2.3. Jet Stability Analysis ................................................................................................. 480
16.13.2.4. Droplet Breakup ...................................................................................................... 481
16.13.3. KHRT Breakup Model ........................................................................................................ 482
16.13.3.1. Introduction ............................................................................................................ 482
16.13.3.2. Use and Limitations ................................................................................................. 482
16.13.3.3. Liquid Core Length .................................................................................................. 482
16.13.3.4. Rayleigh-Taylor Breakup ........................................................................................... 483
xvii
Release 18.1 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.
Theory Guide
16.13.3.5. Droplet Breakup Within the Liquid Core .................................................................... 484
16.13.3.6. Droplet Breakup Outside the Liquid Core .................................................................. 484
16.13.4. Stochastic Secondary Droplet (SSD) Model ........................................................................ 484
16.13.4.1. Theory ..................................................................................................................... 484
16.14. Collision and Droplet Coalescence Model Theory ....................................................................... 485
16.14.1. Introduction ..................................................................................................................... 485
16.14.2. Use and Limitations .......................................................................................................... 486
16.14.3.Theory .............................................................................................................................. 486
16.14.3.1. Probability of Collision ............................................................................................. 486
16.14.3.2. Collision Outcomes .................................................................................................. 487
16.15. Discrete Element Method Collision Model .................................................................................. 488
16.15.1.Theory .............................................................................................................................. 488
16.15.1.1. The Spring Collision Law .......................................................................................... 489
16.15.1.2.The Spring-Dashpot Collision Law ............................................................................ 490
16.15.1.3. The Hertzian Collision Law ....................................................................................... 490
16.15.1.4. The Hertzian-Dashpot Collision Law ......................................................................... 491
16.15.1.5.The Friction Collision Law ......................................................................................... 491
16.15.1.6. Rolling Friction Collision Law for DEM ....................................................................... 492
16.15.1.7. DEM Parcels ............................................................................................................. 493
16.15.1.8. Cartesian Collision Mesh .......................................................................................... 493
16.16. One-Way and Two-Way Coupling ............................................................................................... 494
16.16.1. Coupling Between the Discrete and Continuous Phases .................................................... 494
16.16.2. Momentum Exchange ...................................................................................................... 495
16.16.3. Heat Exchange ................................................................................................................. 495
16.16.4. Mass Exchange ................................................................................................................. 496
16.16.5. Under-Relaxation of the Interphase Exchange Terms ......................................................... 496
16.16.6. Interphase Exchange During Stochastic Tracking ............................................................... 498
16.16.7. Interphase Exchange During Cloud Tracking ..................................................................... 498
16.17. Node Based Averaging .............................................................................................................. 498
17. Multiphase Flows .............................................................................................................................. 501
17.1. Introduction ............................................................................................................................... 501
17.1.1. Multiphase Flow Regimes ................................................................................................... 501
17.1.1.1. Gas-Liquid or Liquid-Liquid Flows .............................................................................. 501
17.1.1.2. Gas-Solid Flows .......................................................................................................... 502
17.1.1.3. Liquid-Solid Flows ...................................................................................................... 502
17.1.1.4. Three-Phase Flows ..................................................................................................... 502
17.1.2. Examples of Multiphase Systems ........................................................................................ 503
17.2. Choosing a General Multiphase Model ........................................................................................ 504
17.2.1. Approaches to Multiphase Modeling .................................................................................. 504
17.2.1.1.The Euler-Euler Approach ........................................................................................... 504
17.2.1.1.1.The VOF Model .................................................................................................. 504
17.2.1.1.2.The Mixture Model ............................................................................................ 505
17.2.1.1.3.The Eulerian Model ............................................................................................ 505
17.2.2. Model Comparisons ........................................................................................................... 505
17.2.2.1. Detailed Guidelines ................................................................................................... 506
17.2.2.1.1.The Effect of Particulate Loading ........................................................................ 506
17.2.2.1.2.The Significance of the Stokes Number .............................................................. 507
17.2.2.1.2.1. Examples .................................................................................................. 507
17.2.2.1.3. Other Considerations ........................................................................................ 508
17.2.3.Time Schemes in Multiphase Flow ....................................................................................... 508
17.2.4. Stability and Convergence .................................................................................................. 509
17.3.Volume of Fluid (VOF) Model Theory ............................................................................................ 510
Release 18.1 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.xviii
Theory Guide
17.3.1. Overview of the VOF Model ................................................................................................ 510
17.3.2. Limitations of the VOF Model .............................................................................................. 510
17.3.3. Steady-State and Transient VOF Calculations ....................................................................... 510
17.3.4.Volume Fraction Equation ................................................................................................... 511
17.3.4.1.The Implicit Formulation ............................................................................................ 511
17.3.4.2.The Explicit Formulation ............................................................................................. 512
17.3.4.3. Interpolation Near the Interface ................................................................................. 513
17.3.4.3.1. The Geometric Reconstruction Scheme ............................................................. 514
17.3.4.3.2.The Donor-Acceptor Scheme ............................................................................. 515
17.3.4.3.3.The Compressive Interface Capturing Scheme for Arbitrary Meshes (CICSAM) ..... 515
17.3.4.3.4.The Compressive Scheme and Interface-Model-based Variants ........................... 516
17.3.4.3.5. Bounded Gradient Maximization (BGM) ............................................................. 516
17.3.5. Material Properties ............................................................................................................. 517
17.3.6. Momentum Equation ......................................................................................................... 517
17.3.7. Energy Equation ................................................................................................................. 517
17.3.8. Additional Scalar Equations ................................................................................................ 518
17.3.9. Surface Tension and Adhesion ............................................................................................ 518
17.3.9.1. Surface Tension ......................................................................................................... 518
17.3.9.1.1.The Continuum Surface Force Model ................................................................. 518
17.3.9.1.2.The Continuum Surface Stress Model ................................................................. 519
17.3.9.1.3. Comparing the CSS and CSF Methods ................................................................ 520
17.3.9.1.4.When Surface Tension Effects Are Important ...................................................... 520
17.3.9.2.Wall Adhesion ............................................................................................................ 520
17.3.9.3. Jump Adhesion .......................................................................................................... 521
17.3.10. Open Channel Flow .......................................................................................................... 522
17.3.10.1. Upstream Boundary Conditions ............................................................................... 522
17.3.10.1.1. Pressure Inlet .................................................................................................. 522
17.3.10.1.2. Mass Flow Rate ................................................................................................ 523
17.3.10.1.3.Volume Fraction Specification .......................................................................... 523
17.3.10.2. Downstream Boundary Conditions ........................................................................... 523
17.3.10.2.1. Pressure Outlet ................................................................................................ 523
17.3.10.2.2. Outflow Boundary ........................................................................................... 523
17.3.10.2.3. Backflow Volume Fraction Specification ........................................................... 524
17.3.10.3. Numerical Beach Treatment ..................................................................................... 524
17.3.11. Open Channel Wave Boundary Conditions ........................................................................ 525
17.3.11.1. Airy Wave Theory ..................................................................................................... 527
17.3.11.2. Stokes Wave Theories ............................................................................................... 527
17.3.11.3. Cnoidal/Solitary Wave Theory ................................................................................... 528
17.3.11.4. Choosing a Wave Theory .......................................................................................... 530
17.3.11.5. Superposition of Waves ............................................................................................ 532
17.3.11.6. Modeling of Random Waves Using Wave Spectrum ................................................... 533
17.3.11.6.1. Definitions ...................................................................................................... 533
17.3.11.6.2. Wave Spectrum Implementation Theory .......................................................... 533
17.3.11.6.2.1. Long-Crested Random Waves (Unidirectional) ......................................... 533
17.3.11.6.2.1.1. Pierson-Moskowitz Spectrum ......................................................... 533
17.3.11.6.2.1.2. JONSWAP Spectrum ....................................................................... 534
17.3.11.6.2.1.3. TMA Spectrum ............................................................................... 534
17.3.11.6.2.2. Short-Crested Random Waves (Multi-Directional) .................................... 534
17.3.11.6.2.2.1. Cosine-2s Power Function (Frequency Independent) ....................... 535
17.3.11.6.2.2.2. Hyperbolic Function (Frequency Dependent) ................................. 535
17.3.11.6.2.3. Superposition of Individual Wave Components Using the Wave Spec-
trum ........................................................................................................................... 536
xix
Release 18.1 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.
Theory Guide
17.3.11.6.3. Choosing a Wave Spectrum and Inputs ............................................................ 537
17.3.11.7. Nomenclature for Open Channel Waves .................................................................... 539
17.3.12. Coupled Level-Set and VOF Model .................................................................................... 540
17.3.12.1. Theory ..................................................................................................................... 540
17.3.12.1.1. Surface Tension Force ...................................................................................... 541
17.3.12.1.2. Re-initialization of the Level-set Function via the Geometrical Method ............. 542
17.3.12.2. Limitations .............................................................................................................. 543
17.4. Mixture Model Theory ................................................................................................................. 543
17.4.1. Overview ........................................................................................................................... 544
17.4.2. Limitations of the Mixture Model ........................................................................................ 544
17.4.3. Continuity Equation ........................................................................................................... 545
17.4.4. Momentum Equation ......................................................................................................... 545
17.4.5. Energy Equation ................................................................................................................. 546
17.4.6. Relative (Slip) Velocity and the Drift Velocity ........................................................................ 546
17.4.7.Volume Fraction Equation for the Secondary Phases ............................................................ 548
17.4.8. Granular Properties ............................................................................................................ 548
17.4.8.1. Collisional Viscosity .................................................................................................... 548
17.4.8.2. Kinetic Viscosity ......................................................................................................... 548
17.4.9. Granular Temperature ......................................................................................................... 549
17.4.10. Solids Pressure ................................................................................................................. 549
17.4.11. Interfacial Area Concentration .......................................................................................... 550
17.4.11.1. Hibiki-Ishii Model ..................................................................................................... 550
17.4.11.2. Ishii-Kim Model ........................................................................................................ 551
17.4.11.3.Yao-Morel Model ...................................................................................................... 552
17.5. Eulerian Model Theory ................................................................................................................ 553
17.5.1. Overview of the Eulerian Model .......................................................................................... 554
17.5.2. Limitations of the Eulerian Model ........................................................................................ 554
17.5.3.Volume Fraction Equation ................................................................................................... 555
17.5.4. Conservation Equations ...................................................................................................... 556
17.5.4.1. Equations in General Form ......................................................................................... 556
17.5.4.1.1. Conservation of Mass ........................................................................................ 556
17.5.4.1.2. Conservation of Momentum .............................................................................. 556
17.5.4.1.3. Conservation of Energy ..................................................................................... 557
17.5.4.2. Equations Solved by ANSYS Fluent ............................................................................. 557
17.5.4.2.1. Continuity Equation .......................................................................................... 557
17.5.4.2.2. Fluid-Fluid Momentum Equations ...................................................................... 557
17.5.4.2.3. Fluid-Solid Momentum Equations ...................................................................... 558
17.5.4.2.4. Conservation of Energy ..................................................................................... 558
17.5.5. Interfacial Area Concentration ............................................................................................ 558
17.5.6. Interphase Exchange Coefficients ....................................................................................... 559
17.5.6.1. Fluid-Fluid Exchange Coefficient ................................................................................ 560
17.5.6.1.1. Schiller and Naumann Model ............................................................................. 560
17.5.6.1.2. Morsi and Alexander Model ............................................................................... 561
17.5.6.1.3. Symmetric Model .............................................................................................. 561
17.5.6.1.4. Grace et al. Model .............................................................................................. 562
17.5.6.1.5.Tomiyama et al. Model ....................................................................................... 563
17.5.6.1.6. Ishii Model ........................................................................................................ 564
17.5.6.1.7. Universal Drag Laws for Bubble-Liquid and Droplet-Gas Flows ........................... 564
17.5.6.1.7.1. Bubble-Liquid Flow .................................................................................. 565
17.5.6.1.7.2. Droplet-Gas Flow ...................................................................................... 565
17.5.6.2. Fluid-Solid Exchange Coefficient ................................................................................ 566
17.5.6.3. Solid-Solid Exchange Coefficient ................................................................................ 569
Release 18.1 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information
of ANSYS, Inc. and its subsidiaries and affiliates.xx
Theory Guide
剩余867页未读,继续阅读
点击了解资源详情
点击了解资源详情
点击了解资源详情
2021-09-29 上传
2018-10-31 上传
点击了解资源详情
2018-06-26 上传
2022-01-12 上传
daidai501
- 粉丝: 1
- 资源: 1
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功